FUZZY I-IDEALS IN IS-ALGEBRAS

Young Bae Jun, Sun Shin Ahn*, and Hee Sik Kim

ABSTRACT. In [9], the concept of fuzzy sets is applied to the theory of \mathcal{I} -ideals in a BCI-semigroup (it was renamed as an IS-algebra for the convenience of study), and a characterization of fuzzy \mathcal{I} -ideals by their level \mathcal{I} -ideals was discussed. In this paper, we study further properties of fuzzy \mathcal{I} -ideals. We prove that the homomorphic image and preimage of a fuzzy \mathcal{I} -ideal are also fuzzy \mathcal{I} -ideals.

1. Introduction

The concept of a fuzzy set is applied to generalize some of the basic concepts of general topology ([1]). Rosenfeld [12] applied it to the elementary theory of groupoids and groups. Xi [13] applied the notion of fuzzy sets to BCK-algebras. Jun [6 - 7] solved the problem of classifying fuzzy ideals by their family of level ideals in BCK(BCI)-algebras, and introduced the notion of closed fuzzy ideals of BCI-algebras and studied their properties. In [8], Jun et al. introduced the concept of IS-algebras and \mathcal{I} -ideals. Moreover, Jun et al. [9] applied the notion of fuzzy sets to BCI-semigroups (it was renamed as an IS-algebra for the convenience of study), and introduced the concept of fuzzy \mathcal{I} -ideals. This paper is a continuation of [9]. We study further properties on fuzzy \mathcal{I} -ideals, and prove that the homomorphic image and preimage of a fuzzy \mathcal{I} -ideal are also fuzzy \mathcal{I} -ideals.

Received December 17, 1999. Revised April 12, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 03G25, 06F35, 94D05.

Key words and phrases: IS-algebra, (fuzzy) I-ideal.

Supported by Dongguk University Fund.

2. Preliminaries

In this section we include some elementary aspects of BCI-algebras, BCI-semi-groups, and fuzzy theories which are necessary for our discussion.

Recall that a BCI-algebra is an algebra (X, *, 0) of type (2, 0) satisfying the following axioms for every $x, y, z \in X$,

- (I) ((x*y)*(x*z))*(z*y) = 0,
- (II) (x * (x * y)) * y = 0,
- $(III) \ x * x = 0,$
- (IV) x * y = 0 and y * x = 0 imply x = y.

A partial ordering \leq on X can be defined by $x \leq y$ if and only if x*y=0. A non-empty subset I of a BCI-algebra X is called an ideal of X if

- (i) $0 \in I$,
- (ii) $x * y \in I$ and $y \in I$ imply $x \in I$.

In [8], Jun et al. introduced a new class of algebras related to BCI-algebras and semigroups, called a BCI-semigroup, and Jun et al. [10] renamed it as an **IS**-algebra for the convenience of study.

DEFINITION 2.1. (Jun et al. [10]) An **IS**-algebra is a non-empty set X with two binary operations "*" and "·" and constant 0 satisfying the axioms:

- (i) (X, *, 0) is a BCI-algebra,
- (ii) (X, \cdot) is a semigroup,
- (iii) the operation "·" is distributive (on both sides) over the operation "*", that is, $x \cdot (y * z) = (x \cdot y) * (x \cdot z)$ and $(x * y) \cdot z = (x \cdot z) * (y \cdot z)$ for all $x, y, z \in X$.

In what follows, for convenience, we shall write the multiplication $x \cdot y$ by xy, and X would mean an IS-algebra unless otherwise specified.

DEFINITION 2.2. (Jun et al. [9]) A non-empty subset I of X is called a left (resp. right) \mathcal{I} -ideal of X if

(i) I is an ideal of a BCI-algebra X,

(ii) $a \in X$ and $x \in I$ imply that $ax \in I$ (resp. $xa \in I$).

We now review some fuzzy logic concepts. We refer the reader to [1], [2], [13] and [14] for complete details. A fuzzy set in a set S is a function $\mu: S \to [0,1]$. For $\alpha \in [0,1]$, the set $\mu_{\alpha} := \{x \in S : \mu(x) \geq \alpha\}$ is called a level subset of μ .

Let S and S' be two sets and let f be a function of S into S'. Let μ and ν be fuzzy sets in S and S', respectively. Then $f(\mu)$, the *image* of μ under f, is a fuzzy set in S':

$$f(\mu)(y') := \left\{ egin{array}{ll} \sup_{f(x)=y'} \mu(x) & ext{if } f^{-1}(y')
eq \emptyset, \\ 0 & ext{otherwise} \end{array} \right.$$

for all $y' \in S'$. $f^{-1}(\nu)$, the preimage of ν under f, is a fuzzy set in S:

$$f^{-1}(\nu)(x) = \nu(f(x))$$

for all $x \in S$.

Let S and S' be two sets, μ be a fuzzy set in S and $f: S \to S'$ be a function. Then μ is said to be f-invariant if f(x) = f(y) implies $\mu(x) = \mu(y)$ for all $x, y \in S$.

Clearly, if μ is f-invariant, then $f^{-1}(f(\mu)) = \mu$.

DEFINITION 2.3. (Xi [13]) A fuzzy set μ of a BCI-algebra X is called a fuzzy ideal of X if for any $x, y \in X$,

- (i) $\mu(0) \ge \mu(x)$,
- (ii) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}.$

DEFINITION 2.4. (Jun et al. [9]) A fuzzy set μ in X is called a fuzzy left (resp. right) \mathcal{I} -ideal of X if

- (i) μ is a fuzzy ideal of a BCI-algebra X,
- (ii) $\mu(xy) \ge \mu(y)$ (resp. $\mu(xy) \ge \mu(x)$) for all $x, y \in X$.

From now on, a (fuzzy) \mathcal{I} -ideal shall mean a (fuzzy) left \mathcal{I} -ideal.

PROPOSITION 2.5. (Jun et al. [9]) A fuzzy set μ in X is a fuzzy \mathcal{I} -ideal of X if and only if it satisfies for any $x, y \in X$,

- (i) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\},\$
- (ii) $\mu(xy) \ge \mu(y)$.

Proposition 2.6. (Jun et al. [9]) Let μ be a fuzzy set in X.

- (i) If μ is a fuzzy \mathcal{I} -ideal of X, then μ_{α} is an \mathcal{I} -ideal of X for all $\alpha \in [0, \mu(0)]$ which is called the level \mathcal{I} -ideal of μ .
- (ii) If μ_{α} is an \mathcal{I} -ideal of X for all $\alpha \in \text{Im}(\mu)$, then μ is a fuzzy \mathcal{I} -ideal of X, where $\text{Im}(\mu)$ is the image set of μ .

PROPOSITION 2.7. (Jun et al. [9]) Let μ be a fuzzy \mathcal{I} -ideal of X. If $\text{Im}(\mu) := \{\alpha_1, ..., \alpha_n\}$, then the family of \mathcal{I} -ideals μ_{α_i} , $1 \leq i \leq n$, constitutes all the level \mathcal{I} -ideals of μ .

PROPOSITION 2.8. (Jun et al. [9]) If a fuzzy set μ in X is a fuzzy \mathcal{I} -ideal of X, then the set $X_{\mu} := \{x \in X : \mu(x) = \mu(0)\}$ is an \mathcal{I} -ideal of X.

PROPOSITION 2.9. (Jun et al. [9]) Let I be a non-empty subset of X and let μ be a fuzzy set in X such that μ is into $\{0,1\}$, so that μ is the characteristic function of I. Then μ is a fuzzy \mathcal{I} -ideal of X if and only if I is an \mathcal{I} -ideal of X.

PROPOSITION 2.10. (Jun et al. [9]) Let μ be a fuzzy \mathcal{I} -ideal of X and let $\mu_{\alpha}, \mu_{\beta}$ be level \mathcal{I} -ideals of μ , where $\alpha < \beta$. Then the following are equivalent:

- (i) $\mu_{\alpha} = \mu_{\beta}$.
- (ii) There is no $x \in X$ such that $\alpha \leq \mu(x) < \beta$.

3. Main Results

THEOREM 3.1. Let μ be a fuzzy set in X and let $\text{Im}(\mu) = \{\alpha_0, \alpha_1, \ldots, \alpha_k\}$, where $\alpha_i < \alpha_j$ whenever i > j. Suppose that there exists a

chain of \mathcal{I} -ideals of X:

$$I_0 \subset I_1 \subset \ldots \subset I_k = X$$

such that $\mu(I_n^*) = \alpha_n$, where $I_n^* = I_n \setminus I_{n-1}$, and $I_{-1} = \emptyset$, for $n = 0, 1, \ldots, k$. Then μ is a fuzzy \mathcal{I} -ideal of X.

PROOF. Let $x, y \in X$. If x and y belong to the same I_n^* , then $\mu(x) = \mu(y) = \alpha_n$, and so

$$\mu(x) \ge \min\{\mu(x*y), \mu(y)\}.$$

Assume that $x \in I_i^*$ and $y \in I_j^*$ for every $i \neq j$. Without loss of generality, we may assume that i > j. Then $\mu(x) = \alpha_i < \alpha_j = \mu(y)$, and so

$$\min\{\mu(y*x), \mu(x)\} \le \mu(x) < \mu(y).$$

Since $y \in I_j^*$, we have $y \in I_j$. It follows that $y \in I_{i-1}$ as $j \leq i-1$. Now we assert that $x * y \notin I_{i-1}$. In fact, if not, then $x * y \in I_{i-1}$ and $y \in I_{i-1}$ implies $x \in I_{i-1}$, which contradicts to $x \in I_i^* = I_i \setminus I_{i-1}$. Hence $\mu(x * y) \leq \alpha_i$, and so

$$\mu(x) = \alpha_i \ge \min\{\mu(x*y), \mu(y)\}.$$

Summarizing the above results, we obtain that

$$\mu(x) \ge \min\{\mu(x*y), \mu(y)\}$$

for all $x, y \in X$. For any $x, y \in X$ there exist indices i and j such that $x \in I_i^*$ and $y \in I_j^*$. Since I_j is an \mathcal{I} -ideal of X, it follows that $xy \in I_j$ so that $\mu(xy) \geq \alpha_j = \mu(y)$. Thus, by Proposition 2.5, μ is a fuzzy \mathcal{I} -ideal of X.

THEOREM 3.2. Let μ be a fuzzy \mathcal{I} -ideal of X. If Im $(\mu) = \{\alpha_i | i = 0, 1, \ldots, k\}$ with $\alpha_i < \alpha_j$ whenever i > j, then $I_n = \mu_{\alpha_n}$, $n = 0, 1, \ldots, k$, are \mathcal{I} -ideals of X and $\mu(I_n^*) = \alpha_n$, $n = 0, 1, \ldots, k$, where $I_n^* = I_n \setminus I_{n-1}$ and $I_{-1} = \emptyset$.

PROOF. By Proposition 2.7, $I_n = \mu_{\alpha_n}$ (n = 0, 1, ..., k) is an \mathcal{I} -ideal of X. Obviously, $\mu(I_0) = \alpha_0$. Since $\mu(I_1) = \{\alpha_0, \alpha_1\}$, for $x \in I_1^*$ we have $\mu(x) = \alpha_1$, namely $\mu(I_1^*) = \alpha_1$. Repeating this process, we conclude that $\mu(I_n^*) = \alpha_n$ for n = 0, 1, ..., k, ending the proof.

THEOREM 3.3. Let μ be a fuzzy \mathcal{I} -ideal of X with $\text{Im}(\mu) = \{\alpha_i | i \in \Lambda\}$ and $\mathcal{H} = \{\mu_{\alpha_i} | i \in \Lambda\}$ where Λ is an arbitrary index set. Then

- (i) there exists a unique $i_0 \in \Lambda$ such that $\alpha_{i_0} \geq \alpha_i$ for all $i \in \Lambda$,
- (ii) X_{μ} is represented by the intersection of μ_{α_i} , $i \in \Lambda$,
- (iii) X is represented by the union of μ_{α_i} , $i \in \Lambda$,
- (iv) the members of H form a chain, and
- (v) \mathcal{H} contains all level \mathcal{I} -ideals of μ if and only if μ attains its infimum on all \mathcal{I} -ideals of X.

PROOF. (i) Since $\mu(0) \in \text{Im}(\mu)$, there exists a unique $i_0 \in \Lambda$ such that $\mu(0) = \alpha_{i_0} \geq \alpha_i$ for all $i \in \Lambda$.

- (ii) Clearly, $X_{\mu} = \mu_{\mu(0)} = \mu_{\alpha_{i_0}}$. Since $\alpha_{i_0} \geq \alpha_i$ for all $i \in \Lambda$, therefore $\mu_{\alpha_{i_0}} \subseteq \mu_{\alpha_i}$ for all $i \in \Lambda$. Hence $\mu_{\alpha_{i_0}} \subseteq \bigcap_{i \in \Lambda} \mu_{\alpha_i}$. The reverse inclusion is obvious, and so $X_{\mu} = \bigcap_{i \in \Lambda} \mu_{\alpha_i}$.
- (iii) Let $x \in X$. Then $\mu(x) \in \text{Im}(\mu)$ and so there exists $i(x) \in \Lambda$ such that $\mu(x) = \alpha_{i(x)}$. This implies $x \in \mu_{\alpha_{i(x)}} \subset \bigcup_{i \in \Lambda} \mu_{\alpha_i}$. This proves (iii).
 - (iv) Noticing that $\alpha_i \geq \alpha_j \Leftrightarrow \mu_{\alpha_i} \subseteq \mu_{\alpha_j}$ for any $i, j \in \Lambda$, (iv) is clear.
- (v) Suppose that \mathcal{H} contains all level \mathcal{I} -ideals of μ . Let I be an \mathcal{I} -ideal of X. If μ is a constant on I, then we are done. Assume that μ is not a constant on I. We discuss the following two cases: (1) I = X and (2) $I \subsetneq X$. For the case (1), we let $\beta = \inf\{\alpha_i | i \in \Lambda\}$. Then $\beta \leq \alpha_i$ for all $i \in \Lambda$, and so $\mu_{\beta} \supseteq \mu_{\alpha_i}$ for all $i \in \Lambda$. Note that $\mu_0 = X \in \mathcal{H}$ because \mathcal{H} contains all level \mathcal{I} -ideals of μ . Hence there exists $j \in \Lambda$ such that $\alpha_j \in \operatorname{Im}(\mu)$ and $\mu_{\alpha_j} = X$. It follows that $\mu_{\beta} \supseteq \mu_{\alpha_j} = X$ so that $\mu_{\beta} = \mu_{\alpha_j} = X$ because every level \mathcal{I} -ideal of μ is an \mathcal{I} -ideal of μ . Now it is sufficient to show that $\mu_{\beta} = \alpha_j$. If $\mu_{\beta} < \alpha_j$, then there exists $\mu_{\beta} \in \Lambda$ such that $\mu_{\beta} \in \operatorname{Im}(\mu)$ and $\mu_{\beta} \in \Lambda$ such that $\mu_{\beta} \in \operatorname{Im}(\mu)$ and $\mu_{\beta} \in \Lambda$. This implies that $\mu_{\alpha_k} \supseteq \mu_{\alpha_j} = X$, a contradiction. Therefore $\mu_{\beta} = \alpha_j$. If case (2)

holds, consider the restriction μ_I of μ to I. By Proposition 2.9, μ_I is a fuzzy \mathcal{I} -ideal of X. Let $\Lambda_I := \{i \in \Lambda | \mu(y) = \alpha_i \text{ for some } y \in I\}$ and $\mathcal{H}_I := \{(\mu_I)_{\alpha_i} | i \in \Lambda_I\}$. Notice that \mathcal{H}_I contains all level \mathcal{I} -ideals of μ_I . Then there exists $z \in I$ such that $\mu_I(z) = \inf\{\mu_I(x) | x \in I\}$, which implies that $\mu(z) = \inf\{\mu(x) | x \in I\}$. Conversely assume that μ attains its infimum on all \mathcal{I} -ideals of X. Let μ_{α} be a level \mathcal{I} -ideal of μ . If $\alpha = \alpha_i$ for some $i \in \Lambda$, then clearly $\mu_{\alpha} \in \mathcal{H}$. Assume that $\alpha \neq \alpha_i$ for all $i \in \Lambda$. Then there does not exist $x \in X$ such that $\mu(x) = \alpha$. Let $I := \{x \in X | \mu(x) > \alpha\}$. Obviously $0 \in I$. Let $x, y \in X$ be such that $x * y \in I$ and $y \in I$. Then $\mu(x * y) > \alpha$ and $\mu(y) > \alpha$. It follows that

$$\mu(x) \ge \min\{\mu(x*y), \mu(y)\} > \alpha$$

so that $x \in I$. Hence I is an ideal of a BCI-algebra X. Assume that $a \in X$ and $x \in I$. Then $\mu(ax) \geq \mu(x) > \alpha$, and so $ax \in I$. Therefore I is an \mathcal{I} -ideal of X. By hypothesis, there exists $y \in I$ such that $\mu(y) = \inf\{\mu(x)|x \in I\}$. Now $\mu(y) \in \operatorname{Im}(\mu)$ implies $\mu(y) = \alpha_j$ for some $j \in \Lambda$; hence $\inf\{\mu(x)|x \in I\} = \alpha_j > \alpha$. Note that there does not exist $z \in X$ such that $\alpha \leq \mu(z) < \alpha_j$. It follows from Proposition 2.10 that $\mu_{\alpha} = \mu_{\alpha_j}$. Hence $\mu_{\alpha} \in \mathcal{H}$. This completes the proof.

DEFINITION 3.4. Let X and X' be **IS**-algebras. A mapping $f: X \to X'$ is called a *homomorphism* if it preserves the "*" and "."-operations.

The following proposition will be used in the sequel.

PROPOSITION 3.5. Let f be a mapping from a set X to a set X', and let μ be a fuzzy set in X. Then for every $\alpha \in (0,1]$,

$$f(\mu)_{\alpha} = \bigcap_{0 < \beta < \alpha} f(\mu_{\alpha - \beta}).$$

PROOF. Let $\alpha \in (0,1]$. For $y = f(x) \in X'$, assume that $y \in f(\mu)_{\alpha}$. Then

$$\alpha \leq f(\mu)(y) = f(\mu)(f(x)) = \sup_{z \in f^{-1}(f(x))} \mu(z).$$

Hence for every real number β with $0 < \beta < \alpha$, there exists $x_0 \in f^{-1}(y)$ such that $\mu(x_0) > \alpha - \beta$, and so $y = f(x_0) \in f(\mu_{\alpha-\beta})$. Therefore $y \in \bigcap_{0 < \beta < \alpha} f(\mu_{\alpha-\beta})$. Conversely let $y \in \bigcap_{0 < \beta < \alpha} f(\mu_{\alpha-\beta})$. Then $y \in f(\mu_{\alpha-\beta})$ for every β with $0 < \beta < \alpha$, which implies that there exists $x_0 \in \mu_{\alpha-\beta}$ such that $y = f(x_0)$. It follows that $\mu(x_0) \ge \alpha - \beta$ and $x_0 \in f^{-1}(y)$, so that

$$f(\mu)(y) = \sup_{z \in f^{-1}(y)} \mu(z) \ge \sup_{0 < \beta < \alpha} \{\alpha - \beta\} = \alpha.$$

Hence $y \in f(\mu)_{\alpha}$, and the proof is complete.

In the following theorems, f will denote a homomorphism from X onto X', where X and X' are **IS**-algebras.

THEOREM 3.6. (i) If μ is a fuzzy \mathcal{I} -ideal of X, then the homomorphic image $f(\mu)$ of μ under f is a fuzzy \mathcal{I} -ideal of X'.

(ii) If ν is a fuzzy \mathcal{I} -ideal of X', then the homomorphic preimage $f^{-1}(\nu)$ of ν under f is a fuzzy \mathcal{I} -ideal of X.

PROOF. (i) In view of Proposition 2.6, it is sufficient to show that each nonempty level subset of $f(\mu)$ is an \mathcal{I} -ideal of X'. Let $f(\mu)_{\alpha}$ be a nonempty level subset of $f(\mu)$ for every $\alpha \in [0,1]$. If $\alpha = 0$ then $f(\mu)_{\alpha} = X'$. If $\alpha \in (0,1]$ then, by Proposition 3.5, $f(\mu)_{\alpha} = \bigcap_{0 < \beta < \alpha} f(\mu_{\alpha-\beta})$. Hence $f(\mu_{\alpha-\beta}) \neq \emptyset$ for each $0 < \beta < \alpha$, and so $\mu_{\alpha-\beta}$ is a nonempty level subset of μ for every $0 < \beta < \alpha$. Since μ is a fuzzy \mathcal{I} -ideal of X, it follows from Proposition 2.6 that $\mu_{\alpha-\beta}$ is an \mathcal{I} -ideal of X so that $f(\mu_{\alpha-\beta})$ is an \mathcal{I} -ideal of X' because f is onto. Hence $f(\mu)_{\alpha}$ being an intersection of a family of \mathcal{I} -ideals is also an \mathcal{I} -ideal of X'.

(ii) For any $x \in X$, we have

$$f^{-1}(\nu)(x) = \nu(f(x)) \geq \min\{\nu(f(x)*y'), \nu(y')\}$$

for any $y' \in X'$. Since f is onto, there exists $y \in X$ such that f(y) = y'.

Hence

$$\begin{split} f^{-1}(\nu)(x) &\geq \min\{\nu(f(x)*y'), \nu(y')\} \\ &= \min\{\nu(f(x)*f(y)), \nu(f(y))\} \\ &= \min\{\nu(f(x*y)), \nu(f(y))\} \\ &= \min\{f^{-1}(\nu)(x*y), f^{-1}(\nu)(y)\}, \end{split}$$

and this result is true for all $x, y \in X$ because y' is an arbitrary element of X'. Now for any $x, y \in X$, we have

$$f^{-1}(\nu)(xy) = \nu(f(xy)) = \nu(f(x)f(y)) \ge \nu(f(y)) = f^{-1}(\nu)(y).$$
 By Proposition 2.5, $f^{-1}(\nu)$ is a fuzzy \mathcal{I} -ideal of X .

THEOREM 3.7. Let μ be a fuzzy \mathcal{I} -ideal of X. The mapping $\mu \mapsto f(\mu)$ defines a one-to-one correspondence between the set of all f-invariant fuzzy \mathcal{I} -ideals of X and the set of all fuzzy \mathcal{I} -ideals of X'.

PROOF. The proof is straightforward in view of Theorem 3.6 and the following results:

- (i) $f^{-1}(f(\mu)) = \mu$, where μ is any f-invariant fuzzy \mathcal{I} -ideal of X;
- (ii) $f(f^{-1}(\nu)) = \nu$, where ν is any fuzzy \mathcal{I} -ideal of X'.

THEOREM 3.8. Let μ and ν be fuzzy \mathcal{I} -ideals of X and X', respectively such that

$$\operatorname{Im}(\mu) = \{\alpha_0, \alpha_1, \dots, \alpha_n\} \text{ with } \alpha_0 > \alpha_1 > \dots > \alpha_n, \text{ and}$$
$$\operatorname{Im}(\nu) = \{\beta_0, \beta_1, \dots, \beta_m\} \text{ with } \beta_0 > \beta_1 > \dots > \beta_m.$$

Then

- (i) $\operatorname{Im}(f(\mu)) \subset \operatorname{Im}(\mu)$ and the chain of level \mathcal{I} -ideals of $f(\mu)$ is $f(\mu_{\alpha_0}) \subset f(\mu_{\alpha_1}) \subset \ldots \subset f(\mu_{\alpha_m}) = X'$.
- (ii) $\operatorname{Im}(f^{-1}(\nu)) = \operatorname{Im}(\nu)$ and the chain of level \mathcal{I} -ideals of $f^{-1}(\nu)$ is $f^{-1}(\nu_{\beta_0}) \subset f^{-1}(\nu_{\beta_1}) \subset \ldots \subset f^{-1}(\nu_{\beta_m}) = X$.

PROOF. (i) Since $f(\mu)(y') = \sup_{f(x)=y'} \mu(x)$ for all $y' \in X'$, obviously $\operatorname{Im}(f(\mu)) \subset \operatorname{Im}(\mu)$. Note that for any $y' \in X'$,

$$y' \in f(\mu_{\alpha_i}) \Leftrightarrow \text{there exists } x \in f^{-1}(y') \text{ such that } \mu(x) \geq \alpha_i$$

$$\Leftrightarrow \sup_{f(z)=y'} \mu(z) \geq \alpha_i$$

$$\Leftrightarrow f(\mu)(y') \geq \alpha_i$$

$$\Leftrightarrow y' \in (f(\mu))_{\alpha_i}.$$

Hence $f(\mu_{\alpha_i}) = (f(\mu))_{\alpha_i}$ for i = 0, 1, ..., n, and therefore the chain of level \mathcal{I} -ideals of $f(\mu)$ is

$$f(\mu_{\alpha_0}) \subset f(\mu_{\alpha_1}) \subset \ldots \subset f(\mu_{\alpha_n}) = X'.$$

(ii) Since $f^{-1}(\nu)(x) = \nu(f(x))$ for all $x \in X$ and since f is onto, we have the equality $\text{Im}(f^{-1}(\nu)) = \text{Im}(\nu)$. Note that for all $x \in X$,

$$x \in f^{-1}(\nu_{\beta_i}) \Leftrightarrow f(x) \in \nu_{\beta_i}$$

$$\Leftrightarrow \nu(f(x)) \ge \beta_i$$

$$\Leftrightarrow f^{-1}(\nu)(x) \ge \beta_i$$

$$\Leftrightarrow x \in f^{-1}(\nu)_{\beta_i},$$

so that $f^{-1}(\nu_{\beta_i}) = f^{-1}(\nu)_{\beta_i}$ for all i = 0, 1, ..., m. Hence the chain of level \mathcal{I} -ideals of $f^{-1}(\nu)$ is

$$f^{-1}(\nu_{\beta_0}) \subset f^{-1}(\nu_{\beta_1}) \subset \ldots \subset f^{-1}(\nu_{\beta_m}) = X.$$

This completes the proof.

References

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [2] P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl. 84 (1981), 264-269.

- [3] S. K. Goel, Characterization of BCI-algebras of order four, Math. Japon. 33 (1988), 677-686.
- [4] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon. 21 (1976), 351–366.
- [5] _____, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1-26.
- [6] Y. B. Jun, Characterization of fuzzy ideals by their level ideals in BCK(BCI)algebras, Math. Japon. 38 (1993), 67-71.
- [7] _____, Closed fuzzy ideals in BCI-algebras, Math. Japon. 38 (1993), 199-202.
- [8] Y. B. Jun, S. M. Hong and E. H. Roh, BCI-semigroups, Honam Math. J. 15 (1993), 59-64.
- [9] Y. B. Jun, S. S. Ahn, J. Y. Kim and H. S. Kim, Fuzzy I-ideals in BCI-semigroups, SEA Bull. Math. 22 (1998), 147-153.
- [10] Y. B. Jun, X. L. Xin and E. H. Roh, A class of algebras related to BCI-algebras and semigroups, Soochow J. Math. 24 (1998), no. 4, 309-321.
- [11] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, Korea, 1994.
- [12] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.
- [13] O. G. Xi, Fuzzy BCK-algebras, Math. Japon. 36 (1991), 935-942.
- [14] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.

Young Bae Jun
Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea
E-mail: ybjun@nongae.gsnu.ac.kr

Sun Shin Ahn
Department of Mathematics Education
Dongguk University
Seoul 100-715, Korea
E-mail: sunshine@dgu.ac.kr

Hee Sik Kim
Department of Mathematics
Hanyang University
Seoul 133-791, Korea
E-mail: heekim@email.hanyang.ac.kr