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EXTREMALLY RICH GRAPH (C*-ALGEBRAS
J. A JEONG

ABSTRACT. Graph (*-algebras C*(E) are the universal C*-algebras
generated by partial isometries satisfying the Cuntz-Krieger relations
determined by directed graphs £, and it is known that a simple graph
C*-algebra is extremally rich in a sense that it contains enough ex-
treme partial isometries in its closed unit ball. In this short paper,
we consider a sufficient condition on a graph for which the associated
graph algebra {possibly nonsimple) is extremally rich. We also present
examples of nonextremally rich prime graph C*-algebras with finitely
many ideals and with real rank zero.

1. Introduction

Recall that a projection p in a C*-algebra A is said to be infinite if it
is Murray-von Neumann equivalent to its proper subprojection. We call
a unital C*-algebra A infinite if the unit projection is infinite, and finite
otherwise. If a unital C*-algebra A has stable rank one (sr(4) = 1, see
[13]), that is, the set A~ of all invertible elements is dense in A, then one
can see that A should be finite. All AF-algebras([13]), irrational rotation
algebras([12]} are those known to have stable rank one.

As an attempt to extend notions and results for finite C*-algebras to
infinite cases Brown and Pedersen (2] considered the quasi-invertible ele-
ments A ! in a unital C*-algebra A and call A extremally rich if the set
A" is dense in A since it turns out in [2] that this condition is equivalent
to say that the closed unit ball A; contains enough extreme points so that
the convex hull of its extreme points coincides with the whole A4;;

conv(E(A)) = Ay,
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where £{A) denotes the extreme points of A;. Since A~ € A7 for any
unital C*-algebra A we see that a unital C*-algebra A with sr(A) =1
is always extremally rich. On the other hand it is a nontrivial fact that
purely infinite simple C*-algebras (for example, Cuntz algebras) are also
extremally rich {see [10],[11]). The Cuntz-algebra O,(n > 2) is the univer-
sal C*-algebra generated by n isometries having orthogonal ranges. More
generally, Cuntz-Krieger algebra 4 is the universal C*-algebra generated
by n partial isometries S; satisfying the relation:

(%) S8 =Y A(4,5)8;5;

=1

where A is an n x n {0, 1}-matrix with no zero row or column (see [6]).

As a generalization of Cuntz-Krieger algebras, a class of C™-algebras
generated by partial isometries subject to the relations determined by
directed graphs has been studied in [9], [8] and later in [4].

Since the graph algebras are basically generated by partial isometries
they are considered to have sufficiently many extreme partial isometries in
their closed unit balls and thus one may expect that most of them should
be extremally rich. In fact, this is true for simple graph C*-algebras.

In this paper we first consider a sufficient condition on a directed graph
E for which the associated graph C*-algebra (possibly nonsimple) is ex-
tremally rich and also present some examples of nonextremally rich prime
graph C*-algebras that have only finitely many ideals and have real rank
zero. For C*-algebras having real rank zero, refer to [1].

2. Preliminaries

We recall definitions and results from {8], [9], and {4] on directed graphs
and graph C*-algebras. A directed graph E = (E° E',r,s) (or simply
E = (E° EY)) consists of countable sets E° of vertices and E' of edges,
and the range, source maps 7,5 : E* — EY. E Is row finite if each vertex
v € E° emits at most finitely many edges, and a row finite graph is locally
finite if each vertex receives only finitely many edges. Ifer,... e, (n > 2)
are edges with r{e,) = s(€41), 1 <4 <n—1, then one can form a (finite)
path @ = (ey,...,e,) of length |a] = n, and extend the maps 7, s by
r{a) = re,), sla) = s(e).
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Let E™ be the set of all finite paths of length n (so vertices in E® are
regarded as finite paths of length zero) and let £* be the set of all finite
paths. Similarly one can consider the set E> of infinite paths. A vertex
v € E° with s7(v) = 0 is called a sink.

Given a row finite directed graph E, a Cuntz-Krieger E-famuly consists
of mutually orthogonal projections {F,|v € E®} and partial isometries
{8, | e € E*} satisfying the Cuntz-Krieger relations

8:"Se = Pugyy € € E', and Py = 3 5.8.", v € s(EY).
s(e)=v
From these relations, one can show that every non-zero word in S, P, and

5% reduces to a partial isometry of the form S, S} for some e, 3 € E* with
r(a) = r(F) ([8], Lemma 1.1).

THEOREM 2.1. ([8], Theorem 1.2) For a row finite directed graph F =
(E°, E'), there exists a C*-algebra C*(E) generated by a Cuntz-Krieger
E-family {s.,p, |v € E®, e € E'} of non-zero elements such that for any
Cuntz-Krieger E-family {S.,F,|v € E° e € E'} of partial isometries
acting on a Hilbert space H, there is a representation = : C*(E) — B(H)
such that

7(se) = Se, and w{p,} =P,
for alle € B',v € E°.

Let {s.,p | € € E',v € E®} be a Cuntz-Krieger F-family generating
the C*-algebra C*(E). Then for each z € T we have another Cuntz-
Krieger E-family {zs., p, | € € E*, v € E%} in C*(E), and by the universal
property of C*(E) there exists an isomorphism -, : C*(E) — C*(E) such
that v,(se) = zs. and . (p,) = po- In fact, v : 2 — v, € Aut(C*(E)) is a
strongly continuous action of T on C*(E) and is called the gauge action
(14)-

We call a finite path o with || > 0 a loop at v if s(a) = r(a) = v. It
turns out that the distribution of loops in a graph £ is very important to
understand the structure of a graph C*-algebra C*{E).

A graph E is said to satisfy condition (L) if every loop in £ has an
exit, and condition (K) if for any vertex v on a loop there exist at least
two distinct loops based at v. Note that condition (K) is stronger than
(L) and if E has no loops then the two conditions are trivially satisfied.

For two vertices v, w we simply write v > w if there is a path o € E*
from v to w. A subset H of EC is said to be hereditary if v > w and
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v € H imply w € H, and a hereditary set H is saturated if s7*{v) # @ and
- {r(e) | s(e) = v} C H imply v € H. The saturation of a hereditary set H
is the smallest saturated subset of E° containing H.

Let H be a saturated hereditary subset of E®. Then the ideal T{H) =
spari{sesy | o, 8 € E*,r(a) = r(8) € H} is clearly gauge-invariant and
I{HY) is generated by {p, [v € H}.

In case F has no sinks, in [9], an isomorphism of the lattice of satu-
rated hereditary subsets V' of E° into the lattice of ideals I(V') in C*(E)
was established and it is shown that the quotient algebra C*(E)/I(V) is
isomorphic to a graph algebra C*(G) for a certain subgraph G of E. More
generally, the following was proved in [4].

THEOREM 2.2. ([4, Theorem 4.1]) Let E = {E°, E* 7, 5) be a row finite
directed graph. For each subset H of E°, let I{H) be the ideal in C*(E)
generated by {p, | v e H}.

(a) The map H — I(H) is an isomorphism of the lattice of saturated
hereditary subsets of E® onto the lattice of closed gauge-invariant ideals
of C*(E).

(b) Suppose H is saturated and hereditary. If F*:= F°\H, F' .= {e €
E' [r(e) ¢ H}, and F := (F°, F',r,s), then C*{E)/I(H) is canonically
isomorphic to C*(F).

Note that if a graph E satisfies condition (K) then the isomorphism of
Theorem 2.2.(a) maps onto the lattice of all closed ideals in C*(£), that
is, every ideal is gauge-invariant. It is known ([4], [7]) that for a row-finite
graph F, the graph C*-algebra C*(E) is simple if and only if £ is a cofinal
graph satisfying condition (L), here we say that E'is cofinal if every vertex
connects to every infinite path. Before we review the following interesting
dichotomy for simple graph C*-algebras, let us recall that a C*-algebra A
is said to be purely infinite if every non-zero hereditary C*-subalgebra of
A has an infinite projection.

PrROPOSITION 2.3. ([8], Corollary 3.11) Let E be a locally finite graph
which has no sinks, is cofinal, and satisfies condition (L). Then C*(FE) is
simple, and

(1) if E has no loops, then C*(E) is AF;

(ii) if E has a loop, then C*(E) is purely infinite.
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3. Extremally rich graph C*-algebra

Let A be a unital C*-algebra and £(A) (or simply &) be the set of
all extrere points in the (convex) closed unit ball A; of A. Then it is
well known that an extreme point v in A; is characterized as a partial
isometry satisfying (1 —vv*)A(1 —v*v) = 0 ([11], Proposition 1.4.7.). Let
A7' be the set of all positive invertible elements of A. We call elements
z € EAJN = ATIEA™Y) quasi-invertible ([3]) and denote the set of all
quaSI—lnvertlble elements in A by A, If A is dense in A we say that
A is extremally rich. For a non—umtal c* —alcrebra, A, A is said to be ex-
tremally rich when its unitization A is so. Obviously a C*-algebra A with
sr(A) = 1 is always extremally rich since A~' ¢ A7l In particular, all
AF-algebras are extremally rich. Other examples are purely infinite sim-
ple C*-algebras ([11], Theorem 10.1), the Toeplitz algebra ([11], Corollary
9.2), commutative C*-algebras C{X) with dim(X) < 1 (see [3], section 3),
and all von Neumann algebras ([11], Theorem 4.2). Thus from Proposition
2.3 it follows that every simple graph C*-algebra C*(E) is extremally rich
for a row-finite directed graph E. Also if A is an extremally rich simple
C*-algebra then it is known that either it is purely infinite or it has stable
rank one ([2], Corollary 10.5).

We will see some other nonsimple graph C*-algebras which are ex-
tremally rich.

THEOREM 3.1. ([7, Theorem 3.3]}) Let E = (E° E") be a row finite
directed graph. Then E has no loop with an exit if and only if sr(C*(E)) =
1.

Besides the algebras with stable rank one we will see that there are
extremally rich graph C*-algebras including the Toeplitz algebra 7" with
higher stable rank (sr(7) = 2). These graph algebras will arise from
directed graphs containing some loops with exits, so that they should
have many infinite projections (generated by the exits of loops) and hence
their stable rank is not one any more.

To this end note the following corollary of Theorem 2.2.

COROLLARY 3.2. ([7, Theorem 3.5]) Let K = (E°, E',r,s) be a row-
finite directed graph with the set V' of sinks. Then there is a subgraph G =
(E°\ H,{e € E' | r(e) ¢ H}) of E with no sinks such that C*{E)/I(V)
is isomorphic to C*((7), where H is the saturation of V and I{V) =
span{s,sg’ |, B € E*, r(a)=r(8) € V}.
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PROPOSITION 3.3. ([7, Proposition 3.7]) Let G be a locally finite di-
rected graph. If G is cofinal then either sr(C*(G)) = 1 or it is purely
infinite and simple.

COROLLARY 3.4. If the subgraph G in Corollary 3.2 is cofinal then the
quotient algebra C*(E)/I is either of stable rank one or purely infinite
simple.

We also need to review briefly the following useful results on extremally
rich C*-algebras.

THEOREM 3.5. ([2],[3]) (a) Every quotient, every direct sum or direct
product and every hereditary (*-subalgebra of an extremally rich C*-
algebra is again extremally rich.

(b) If A is strong Morita equivalent (or stably isomorphic) to an extremally
rich C*-algebra B then A is also extremally rich.

Let A be a unital C*-algebra and I be a closed two-sided ideal.

(c) Suppose sr(I) = 1. Then A is extremally rich if and only if A/I is
extremally rich and extreme partial isometries Iift.

(d) sr(4) = 1 if and only if sr(I) = sr(A/I) = 1 and every invertible
elements lifts, that is, (ffi/ n-t= AT

For a C*-algebra A and projections P, @ in A, the extreme points
E(PAQ) of the closed convex set PA;Q consist of elements u € PA ¢}
which is a partial isometry such that (P —wu*)A(Q —u*w) = {0}. We say
that the space PAQ is extremally rich if either £(PAQ) = 0 or E(PAQ) #
@ and (PAP)E(PAQYQAQ) ™! is dense in PAQ. If E£(PAQ) # @ then
PAQ is extremally rich if and only if PA1Q = conv(£(PAQ)) (see [2]).

For any non-zero projections P, @ acting on a Hilbert space ‘H, one
can show that £(PB(H)Q) # ¢ and the space PB(H)( is extremally rich
by Proposition 11.4 of [2]; if 4 is a C*-algebra with real rank zero and
E(PAQ) # B for every pair of projections P, @ in A, then every such a
space PAQ is, in fact, extremally rich.

PROPOSITION 3.6. ([2], Proposition 11.7) Let I be a closed ideal with
real rank zero in a unital C*-algebra A, such that PIQ is extremally
rich for any pair of projections such that P € A and Q@ € [. If A/T is
extremally rich and £(A/I) consists only of isometries and co-isometries
then A is extremally rich.
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Now we prove the main theorem which generalizes Propositioa 2.3.
Note that the C*-algebra B{H) and its closed ideal K(H) of compact
operators are known to have real rank zero.

THEOREM 3.7. Let E = (E°, F'} be a locally finite directed graph and

V the set of sinks. If the subgraph (¢ in Corollary 3.2 is cofinal then C*(E)
i extremally rich.

PRrRoOF. Note first that RR(I) = 0, where J = I(V) is the ideal in
Corollary 3.2, since [ is the direct sum of orthogonal ideals I; which is
isomorphic to K(£2(E*(v;))) (see [8, Corollary 2.2]). Here we set ¥V =
{v; | i€ A} and E*(vs) = {a € E* | r(a) =v;}. Let Pe C*(E), Q&I
be any two projections. Then we have PIQ) = &;PI,Q and PLQ C 1.
Furthermore it is easy to see that PL;Q = PB (Hi)Q for some projections
P ¢ B(H,) and @ & KC(H;), where M; denotes the Hilbert space £2(E*(v;)).
Thus the spaces PI;QQ are all extremally rich and so their direct sum PIQ)
is also extremally rich.

Now we prove the assertion case by case.

Suppose G has no loops. Then C*(E)/I is an AF algebra since GG has
no loops if and only if C*(G) is an AF algebra by ([8, Theorem 2.4])
and hence sr(C*(E)/I) = 1. Since every invertible element in an AF

e

algebra C*(E)/I lifts to an invertible element in C*(E), sr(C*(E)) =1
by Theorem 3.5.(d).

If G has precisely one loop and the loop has no exit then sr(C*(G)) =1
by Theorem 3.1, so that sr(C*(E)/I) = 1, and hence every extreme partial

isometry of C*(£)/I is unitary. Therefore by Proposition 3.6 we conclude
that C*(E) is extremally rich.

If the (cofinal) graph G has precisely one loop and it has an exit then G
satisfies condition (L). Thus the algebra C*((G) is simple and its stable rank
is not one since there are infinite projections in C*(G). Thus by Proposi-
t/ig_g__?l.S C*(@G) is purely infinite simple and so extremally rich. Therefore

C*(F)/I is prime, and hence £(C*(F)/I) consists only of isometries and
coisometries. By Proposition 3.6, C*(E) is extremally rich.

Finally let G have at least two loops a, 3. If v is a loop in G then we may
assume that v # « and consider an infinite path z = aa - -+ = {zq, 22, - - - ).
Since G is cofinal there exists a finite path § € G* connecting the vertex
v = s(v) to z, = r(8) for some n, which means that v has an exit.
Therefore G is a cofinal graph satisfying condition (L}, so that C*{£)/1 is




528 J. A Jeong

purely infinite and simple and thus it is extremally rich. Then we conclude
that C*(F) is extremally rich by the same reason as in the preceding
case. 0

PROFPOSITION 3.8. Suppose a graph C*-algebra C*( £) contains an ideal
I{H) with stable rank one such that the subgraph G generating the quo-
tient algebra C*(G) (= C*(E)/I1(H)) is cofinal. If (7 satisfies condition
(L) then C*(E) is extremally rich.

Proor. Since & satisfies condition (L), the third case as in the proof
of Theorem 3.7 will not happen. Then it suffices to note that we applied
Proposition 3.6 to prove only this case and for other three cases Theorem
3.5 (c) was useful and is still applicable under the assumptions of the
proposition. O

ExamprLE 3.9. Consider the following graph.

f
(3

The sink v generates an ideal I which is isomorphic to X, the compact
operators acting on an infinite dimensional separable Hilbert space. Set
S =5.+ 55 Then §*S =1and S5* =p, <1l=p, +p,. Thus Sis a
proper isometry. Let 7 be the C*-subalgebra of C*(E) generated by S.
Since S(1 — SS*) = sy, it follows that s; € 7, hence C*(E) = 7 and
7 is the Toeplitz algebra which is extremally rich. In this example, the
subgraph G in Theorem 3.5 is the simple loop e. More generally, if a graph
E consists of a simple loop with n vertices and each of the vertices emits
an edge then we can conclude that the resulting graph algebra C*(E) is
extremally rich.

4. Examples of non-extremally rich prime graph (*-algebras

In this section we show that there are many graph C™*-algebras with nice
properties but are not extremally rich by constructing some examples.

Note from Corollary 3.7 in [10] that if [ is a purely infinite simple ideal
of a unital C*-algebra A such that the quotient algebra A/ is also purely
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infinite and simple then A should be extremally rich. On the other hand,
it is known in [10, Remark 4.10] that there exists a non-extremally rich
unital C*-algebra B (non-separable) with two proper ideals I; C f; such
that [y, Is/I) and B/I; are all purely infinite and simple (hence extremally
rich). In the following we construct a separable unital C*-algebra B with
RR(B) = 0 which has exactly three proper ideals and every possible
quotient is purely infinite and extremally rick, but B is not.

ExAMPLE 4.1. Consider the following locally finite directed graph F =
(E°, EY).

Let H be the smallest hereditary saturated vertex subset containing
v. Then C*(E) has real rank zero by [7] since E satisfies condition (K)
and C*(E) has exactly three proper ideals; recall that for a graph algebra
C*{ ) with finitely many ideals; BR{(C*(F)) = 0 if and only if F satisfies
condition (K). It is easy to see that the ideal I{H) corresponding to H
is stably isomorphic to the graph algebra C*(G), where G is a subgraph
of £ with three vertices in the middle of £ and four edges connecting
them ([9]). Since G is cofinal and satisfies (K} (hence (L)) C*(&) is purely
infinite and simple by Proposition 3.3. Thus /(A should be purely infinite
and simple since it is well known that being purely infinite and simple is
stable property under a stable isomorphism.

Moreover note that I(H) is essential in C*(E), that is, it has nonzero
intersection with every other nonzero closed ideal. Thus the graph al-
gebra C*(E) is prime and hence its extreme point set of the unit ball
consists of isometries or coisometries. Now consider the quotient algebra
C*(E)/I(H), then it is isomorphic to the graph C*-algebra C*(F), where
F = (E°\ H {e | r(e) ¢ H}). Since C*(F) is isomorphic to the direct
sum Oz @ Os of the Cuntz algebra Oz which is purely infinite and simple,
the quotient algebra is extremally rich.

Let s1, 53 be two isometries generating the Cuntz algebra Q. If C*(E)
were extremally rich then by {2, Corollary 9.3| every extreme partial isom-
cetry of C*(E)/J(H) should lift. But the partial isometry v = s; @ s (i =
1,2) is extremal in the quotient algebra C*(E)}/I{H) and cannot lift to
an isometry or a coisometry. This proves the assertion. Note that C*(E)
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(and so every ideal) is purely infinite since E satisfies (L) and every vertex
connects to a loop ([4, Proposition 5.31}.

In the following example, the essential ideal will be an AF (so finite)
algebra. :

EXAMPLE 4.2. Consider the following directed graph & = (E°, E).

Let H be the smallest hereditary saturated vertex subsetl containing
v as above. Then E obviously satisfies condition (K) and hence C*(E)
has real rank zero by [7]. As in the preceding example C*{E) has exactly
three proper ideals and the ideal I{H) corresponding to H is essential in
C*(E). One different thing about I(H) from Example 4.1 is that I(H)
is stably isomorphic to the simple C*-algebra K of the compact operators
acting on a separable infinite dimensional C*-algebra. Now consider the
quotient algebra C*(E)/I(H). Then it is isomorphic to the graph C*-
algebra C*(F), where F' = (E°\ H,{e | r(e) ¢ H}) by Theorem 2.2.(b}.
Since C*(F) & Oy & O, as before, the quotient algebra is extremally rich
and contains extremal partial isometries which cannot lift, and this proves
the assertion.

REMARK 4.3. We have seen that a cofinal graph generates an ex-
tremally rich graph C*-algebras in section 3 and the two graphs examined
above generate nonextremally rich C*-algebras. In fact these graphs are
not cofinal, and it would be interesting to find conditions of graphs which
are not cofinal but generate extremally rich C*-algebras.
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