Bull. Korean Math. Soc. 37 (2000), No. 2, pp. 353-360

A COMPARISON THEOREM OF
THE EIGENVALUE GAP FOR
ONE-DIMENSIONAL BARRIER POTENTIALS

JunG-SooN HYunN

ABSTRACT. The fundamental gap between the lowest two Dirich-
let eigenvalues for a Schrddinger operator Hp = "g’i + V(z) on
L?({-R, R)) is compared with the gap for a same operator Hg with
a different domain [, 5] and the difference is exponentially small
when the potential has a large barrier.

1. Introduction

It is well known that all eigenvalues of one dimensional Schrédinger
operators and the lowest eigenvalue of higher dimensional Schrédinger
operators are nondegenerate. Although general bounds on gap between
any consecutive eigenvalues has been considered in the various situa-
tions[4, 6], the fundamental gap between the first two eigenvalues has
particular attraction because it represents the first excitation energy as
well as can be used to estimate the probability of quantum tunneling[5].
One can easily see an upper bound for the gap as A; — Ap < 3Xg but it is
not easy to find a lower bound. For symmetric single well potentials or
convex potentials, the gap satisfies

(1) Al— Ao > 3 ('71)2

4\S
where domain is [0, 5] (see (1, 7}).
Since barrier potential on [0, R] cut off onto [0,S] at some suitable
point S (usually the first peak) would be a single well, it is natural to
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guess that the gap for barrier potentials would not differ much from the
one of a single well. So we show the difference is exponentially small. It
would be interesting in calculating gap between two consecutive eigenval-
ues but we need more knowledge about eigenfunctions within the tech-
nique used here.

2. A Comparison Theorem

Consider a Schrodinger operator Hg = —% +V(z) on L*([—R, R))
with Dirichlet boundary condition at the end points. Let A;(R) be the
two lowest eigenvalues for Hgr(i = 0,1). Also we define \;(S) the lowest
two Dirichlet eigenvalues for Hg = —%+V(m)X[_S,S] on L2 ([-S,S]) . Let
z1(A) =inf {z € [0, 5] |[V(z) > A} and z2(\) = sup{z € [0, 5] |V (z) > A}
i.e., [£1(A), z2(N)] is the least interval containing the classically forbidden
region. The following proposition is a kind of WKB estimate of wave
functions. Let

z2(A)
@) B(\) = exp (-2 / L V@)= Adx) .

PROPOSITION 2.1. Suppose that —¢"(z) + V(z)p(z) = Ap(z) with
¢(0) = 0. For any 0 < § < za(A) — z1(A), if

(3) ¢'(z2(A)p(22(2)) <0

then

()
/ (V(z) = N) lo(@) [ do

2(A)—6

z2(X)—6 z1(}) 9
< exp (—2 VV(z) - /\dx) /(; (A = V(z)) |e(z)|” dz.

2‘1(/\)

Proof. For F(z) differentiable and F(z) = 1 on [0, z;()\)], note that
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F(2)¢ (z)p(x) 30

Z9(A)—0 — —
+
W = [T [P r (V- N ) s

z2(A)—d |F/|
> V=Xl + ¢ (F————)dz
[ 0=l +ieD] (P~ 5

xl(A) 2
~/0 A= V) ol dz

using the inequality ab = (a+/c) (b/+/c) > —£2¥ and choosing ¢ =

2c
V'V (z) — A Define F(z) as follows:
exp (2 f;(k) VV(t) - )\dt) on z > z1(A)

1 on 0<z<z(N).

F(z) =

The choice of F(z) makes the first integrals in (4) vanish and gives
¢ (z2(A) — O)p(z2(N) - 8) -

z2(X)—8 z1(X) 9
< exp (—2 NGOE )\dx) /0 (A= V(@) lo(@) de.

:t]()\)
Similarly we have

R z2(A)
d@EN = [ (W@l + V@ -3 le)) e

so that by hypothesis

z2())
/ (V(2) - 3 lo(@)] dz

2(A)-6

Zo(A
¢ (@)p(@)[20_

acg(A)—é Il(/\)
exp | -2 VV(z) — Mz (A = V() |p(@)]’ dz.
z 0 O

IA

IN

1(A)
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As we see in 3], gap could be small when V(z) is double well. So we

need to rule out the case. If V(z) > A on [z1(A),z2())], the following
holds:

COROLLARY 2.2. Assume that ¢ satisfies (3). If V(z) > 0 on [0, S),
V(z) > X on [£1()), z5(A)] and

Z2(A)
/ VV(z) = Adz > 1,

1{A)
then we have

z2(A) ) z1(A) .
/ (V(z) - V) [o(@)*dz < EAB(N) / lo(2)f? d.
zz(/\)—5 0

Proof. Since V(z) >0for 0 <z < S,

Z2(A)
[ (v@ -3 ie@ita

2(A)~4
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Corollary 2.2 implies that eigenvalues are insensitive to boundary con-
ditions when barrier is high. The next Lemma holds for Neumann eigen-
values too.

LEMMA 2.3. Suppose that 0 < V(z) < C ([0, S]) and for real 3, Ej is
the lowest eigenvalue of the operator Hs = —j‘;i,+V(a:) on L% ([0, S]) with
the Dirichlet boundary condition at 0 and ¢'(S) = Byp(S). Let E., be the
one for ¢(S) = 0. For each 8 < 0, if V(z) > Ej on [z, (Ep) , z3 (Es)] and

/x (:;) V(@) - Bpde > 1,

0 S Eoo - Eﬂ S €2EﬁB(Eﬁ).

then
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Proof. For any ¢ € L? ([0, S]) with ¢ (0) = 0 and ¢ (S) =0,

S
Ew ®dz = inf (Hpgep,
[ lo@pds = e (Hap,p)

< [ (w@P+V@ler)

Let 13 be a real normalized eigenfunction for Eg and suppose x(z) is
real, has a bounded derivative and x (0) = 0, x (S) = 0. Then

S S
B [ bets(@)fde < [ (Joot) @[ + V(o) bes(o)P) e
S
= [ (X@us@P + Bs bevs(a)l’) da
so that
By Ey < fo X/ (= I dz.
fo IX"/)ﬂ
Choose

0<z< .’L‘2(Eﬁ)
X (.’12) - a:z(E/i) /V(t Eﬁdt Z2 Eﬁ) 6ﬁ <z<L :B2(Eﬂ)

zo(Eg) <z <8
where 8 is chosen so that

2(Ejp)
\/V(z) — Egdz = 1.

z2(Ep)—dp

By Corollary 2.2 we have

§ 2
/0 (@) dz

IN

z2(Ep) .
/ (V(@) = Ep) lus(c)|? dz
z2(Eg)—ds
xl(E

< E;B(Ep) / () da

< @B [ botse)Pda
since x,(Eg) < z2(Eg) — 6 and x = 1 on [0, 22(Ejp) — ] - a
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As in [2], existence of eigenvalues of a BVP
")+ A=V(z)p(z) =0 for z € [a,}]
w(a)cosa — ¢'(a)sina =0
@ (b)cosB — ¢/ (b)sinf =0
can be shown by Priifer transform. One can choose an eigenfunction
¢(z) as r(z)sinf(z, \) and its derivative ¢'(z) as r(z)cosb(z, A) in (5)
where 7(z) > 0 so that the derivative ¢/(z) vanishes where 6(z, ) = 1.

(5)

THEOREM 2.4. Suppose that V(z) is continuous, positive, symmet-
ric on [—R, R]. Let A; (R) be the lowest two eigenvalues for the Dirichlet
Schrédinger operator Hg = —j‘%—i—V(z) on L? ([~ R, R]) and X\;(S) for the
Dirichlet Schrodinger operator Hg = —% + V(z)X[-s,5 on L* ([-S, S]) .
Suppose V(z) > M(R) on [z1(M(R)),z2(M(R))). If2 < § < R,
T2 (/\1(R)) = S, and

z2(M(R))
/ V@) = Mm(B)de > 1

1(A(R)
then the gap satisfies
M(R) = Ao(R) 2 M(S) = M(S) — €M(R)B(M(R))
where B()) is defined in (2).
REMARK 1. The interval [z; (A (R)), z2 (M (R))] satisfying the hy-
pothesis in Theorem 2.4 could be empty for a certain class of potentials.
However when a barrier is high like a radioactive model for a quan-

tum particle, the classically forbidden region is not empty. For example
consider a harmonic oscillator &4;7 + 3ka? on L? (R). Then it is known

that the eigenvalue E, = (n + %) V2k. The second lowest eigenvalue
E, = _%\/ 2k and the forbidden region corresponding to E, is the interval

(—-oo, -3 :) U (3 :, oo) . We would think of the barrier potential as a

perturbation of a harmonic oscillator.

Proof. By Min-max principle, we know A;(R) < X;(S) which gives
M(R) = M(R) = M(R) — M(S)
= A(S) — X(S) — (Ai(S) — M(R)) .
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So it is enough to estimate A;(S)—A1(R). Let ¥ (z) be a eigenfunction for
A1(S). Then it has only one zero on (—S, S) and it should be 0 since V()
is symmetric. Hence 1;(z)0 is an eigenfunction for the lowest Dirichlet
eigenvalue on [0, S] since it has no zeros on the open interval (0,S). As
in notations in Lemma 2.3, A;(S) = E. The same argument works for
A(R) = Ej by cutting the eigenfunction ¢;(z) for A;(R) onto [—S, S]
where 3 = —lg—s—) By Lemma 2.3 the estimate for A;(S) — A\ (R) can be

obtained as long as 8 < 0. The preceding remark of Lemma 2.3 says the

derivative of ¢;(x) vanishes where 6(z,A) = 1. This occurs at z = &

since the domain is [~R, R]. Hence if £ < § < R, then ¢{(z) < 0 as
required. O

The theorem above can be applied to calculate a lower bound for eigen-
value gap approximately comparing the known result. Suppose that a
symmetric high barrier potential V(z) is increasing on [0, S] and decreas-
ing on [S,R]. If £ < $ < R, from (1) we know

A(R) — do(R) > 4( — M1 (R)B(\1(R)).

S)
The assumption for symmetry of potential V' (z) can be omitted. Then
the domain compared will be different like [T, S] where T is the zero
of 11(z) as in Theorem 2.4. Also positivity was adopted for a simple
calculation since gap does not change by adding a constant.
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