ON DOUBLY STOCHASTIC k-POTENT MATRICES AND REGULAR MATRICES

SUNG-SOO PYO

ABSTRACT. In this paper, we determine the structure of k-potent elements and regular elements of the semigroup Ω_n of doubly stochastic matrices of order n. In connection with this, we find the structure of the matrices X satisfying the equation $AXA = A$. From these, we determine a condition of a doubly stochastic matrix A whose Moore-Penrose generalized inverse is also a doubly stochastic matrix.

0. Introduction

Let \mathbb{R}^n denote the set of all n-dimensional real column vectors, and let e denote the vector in \mathbb{R}^n all of whose entries are 1. If all of the entries of a real matrix A are nonnegative, A is called nonnegative matrix and is denoted by $A \geq 0$. An $n \times n$ nonnegative matrix D is said to be doubly stochastic if $De = e, e^T D = e^T$. Let J_n denote the $n \times n$ doubly stochastic matrix all of whose entries are $1/n$. As usual, we denote the set of all $n \times n$ doubly stochastic matrices by Ω_n. The set Ω_n has very rich and interesting combinatorial and geometric properties. For instance, there are a lot of results for permanent of elements in Ω_n [6,7,8], and it is very well known that Ω_n is a convex polyhedron whose vertices are all permutation matrices [See (1) chapter 2]. In addition, Ω_n is known to be a compact semigroup under the ordinary matrix multiplication with respect to the natural topology [4], and is very closely related to the theory of majorization [5].

In earlier results, it was proved that there is a finite number of maximal subgroups of the semigroup Ω_n [1], and all idempotent elements are

Received June 23, 1999.
2000 Mathematics Subject Classification: 15A51.
Key words and phrases: doubly stochastic, k-potent, regular elements.
obtained in [2]. In 1983, J. S. Montague and R. J. Plemmons gave several equivalence relations for regular elements in \(\Omega_n \), and characterized the Green's relation on the semigroup \(\Omega_n \) [9]. S. Schwarz [11] and H. K. Farahat [3] have shown that the maximal subgroups of \(\Omega_n \) are direct sum of symmetric groups.

In this paper, we explicitly determine the structure of regular elements and \(k \)-potent elements of the semigroup \(\Omega_n \) by using Perron-Frobenius Theorem.

1. Preliminaries

An \(n \times n \) matrix \(A \) is said to be reducible if there exists a permutation matrix \(P \) such that

\[
P^T AP = \begin{bmatrix} A_{11} & A_{12} \\ O & A_{22} \end{bmatrix}
\]

where \(A_{11} \) and \(A_{22} \) are nonvacuous square matrices, otherwise it is called irreducible.

For each square matrix \(B \), there exists a permutation matrix \(Q \) such that

\[
Q^T B Q = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1k} \\ O & B_{22} & \cdots & B_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & B_{kk} \end{bmatrix}
\]

where \(B_{ii} \) is an irreducible square matrix for each \(i = 1, \cdots, k \). The matrices \(B_{ii} \) are irreducible components of \(B \). If a doubly stochastic matrix \(D \) is reducible, then it is permutation similar to a direct sum of irreducible doubly stochastic matrices.

The following theorem about the spectral radius of nonnegative irreducible matrices is very well known. For a real square matrix \(A \), let \(\rho(A) \) denote the spectral radius of \(A \).

Theorem 1 (Perron-Frobenius). If \(A \) is a square nonnegative and irreducible matrix, then

(a) \(\rho(A) \) is an eigenvalue of \(A \),

(b) There is a positive eigenvector corresponding to the eigenvalue \(\rho(A) \),

402
On doubly stochastic k-potent matrices and regular matrices

(c) Algebraic multiplicity of $\rho(A)$ as an eigenvalue of A is 1.

By Theorem 1 and Geršgorin Theorem, 1 is the simple and maximal eigenvalue of all irreducible doubly stochastic matrix. Since a reducible doubly stochastic matrix is permutation similar to a direct sum of doubly stochastic matrices, we get the following.

Lemma 2. Algebraic multiplicity of the eigenvalue 1 of a doubly stochastic matrix is the number of its irreducible components.

2. k-potent elements and regular elements of Ω_n

An element E in Ω_n is said to be *idempotent* if $E^2 = E$, and it is said to be *k-potent* if $E^k = E$ but $E^m \neq E$ for $m = 2, \ldots, k - 1$. It is very well known that an idempotent matrix is diagonalizable, and each of its eigenvalues is either 1 or 0. Therefore the rank of an idempotent matrix is the same as its trace. Note J_n is the only doubly stochastic matrix of rank 1. From these facts and from Lemma 2, we obtain the following. The following theorem due to J. L. Doob [2].

Theorem 3 (Doob). An $n \times n$ doubly stochastic matrix A is idempotent if and only if there exists a permutation matrix P such that

$$P^T AP = J_{k_1} \oplus J_{k_2} \oplus \cdots \oplus J_{k_r},$$

where $k_1 + k_2 + \cdots + k_r = n$.

For an $r \times r$ permutation matrix P and square matrices A_1, A_2, \cdots, A_r we denote by $\otimes(P; A_1, \cdots, A_r)$ the matrix obtained from P replacing the 1 in the ith row by A_i for each $i = 1, 2, \cdots, n$, and each of the zero entries by a zero matrix of suitable size. For example, if

$$P = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix},$$

then

$$\otimes(P; A_1, A_2, A_3) = \begin{bmatrix}
O & A_1 & O \\
O & O & A_2 \\
A_3 & O & O
\end{bmatrix}. $$

403
Sung-SoO Pyo

THEOREM 4. An $n \times n$ doubly stochastic matrix A is k-potent if and only if there exist permutation matrices P, Q such that

$$P^T AP = \otimes(Q; J_{k_1}, J_{k_2}, \cdots, J_{k_r})$$

where $k_1 + k_2 + \cdots + k_r = n$ and Q is k-potent in which all the irreducible components of Q are of the same order.

Proof. Let $k \geq 3$ be an integer such that $A^k = A$. Then $A^{k-1}A = A, AA^{k-1} = A$. This says that all column vectors (row vectors) of A are right (left, respectively) eigenvectors of A^{k-1} corresponding to eigenvalue 1. If A^{k-1} is irreducible, then e is the only eigenvector of A^{k-1} corresponding to the eigenvalue 1. So, A must be J_n, an idempotent matrix, and we are done in this case.

Suppose that, for some permutation matrix P, $P^T A^{k-1}P$ is of the form

$$P^T A^{k-1}P = \begin{bmatrix} B_{11} & O & \cdots & O \\ O & B_{22} & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & B_{rr} \end{bmatrix}$$

where each B_{ii} is an irreducible component of A^{k-1} for $i = 1, \cdots, r$. Let $P^T AP$ be partitioned as

$$P^T AP = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1r} \\ A_{21} & A_{22} & \cdots & A_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ A_{r1} & A_{r2} & \cdots & A_{rr} \end{bmatrix},$$

where A_{ii} is of the same size as B_{ii} for each $i = 1, 2, \cdots, r$.

Since all column vectors and row vectors of A are right and left eigenvectors of A^{k-1} corresponding to eigenvalue 1, $B_{ii}A_{ij} = A_{ij}$ and $A_{ij}B_{jj} = A_{ij}$ for all $i, j = 1, 2, \cdots, r$. From the irreducibility of B_{ii}, all the entries of each of the blocks A_{ij} are the same for $i, j = 1, 2, \cdots, r$.

Now we partition $P^T A^{k-2}P$ as the same way of $P^T AP$,

404
On doubly stochastic k-potent matrices and regular matrices

$$P^T A^{k-2} P = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1r} \\ C_{21} & C_{22} & \cdots & C_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ C_{r1} & C_{r2} & \cdots & C_{rr} \end{bmatrix}$$

where each C_{ii} is of the same size as A_{ii} for each $i = 1, 2, \cdots, r$.

Since $AA^{k-2} = A^{k-2} A = A^{k-1}$, we have

$$P^T A A^{k-2} P = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1r} \\ A_{21} & A_{22} & \cdots & A_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ A_{r1} & A_{r2} & \cdots & A_{rr} \end{bmatrix} \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1r} \\ C_{21} & C_{22} & \cdots & C_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ C_{r1} & C_{r2} & \cdots & C_{rr} \end{bmatrix}$$

$$= \begin{bmatrix} B_{11} & O & \cdots & 0 \\ O & B_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & B_{rr} \end{bmatrix} = P^T A^{k-1} P.$$

Since each A_{ij} is either a positive matrix or O matrix and since C_{ij} is a nonnegative matrix and $\sum_{i=1}^{r} A_{ii} C_{ij} = O$ for $i \neq j$, we get that $A_{ii} C_{ij} = O$ if $i \neq j$.

Suppose that there are two nonzero blocks in the same block row of the above partition $P^T A P$, say A_{11} and A_{12} are nonzero blocks, then all of C_{ij} are O for $i = 1, 2$, $j = 2, \cdots, r$, i.e.

$$P^T A^{k-2} P = \begin{bmatrix} C_{11} & O & O & \cdots & O \\ C_{21} & O & O & \cdots & O \\ C_{31} & C_{32} & C_{33} & \cdots & C_{3r} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{r1} & C_{r2} & C_{r3} & \cdots & C_{rr} \end{bmatrix}$$

Contradicting to that A^{k-2} is doubly stochastic. Therefore each row of $P^T A P$ has exactly one nonnegative block entry, telling us that each nonzero block is a doubly stochastic matrix, so that it is a square matrix. Let A_i denote the nonzero block in the ith row of $P^T A P$. Then $P^T A P$ can be expressed as $\otimes(Q; A_1, A_2, \cdots, A_r)$ for some permutation matrix Q.

405
Sung-So Pyo

Now we determine the size of the each nonzero block. First, we can easily observe that A_i and A_j have the same size if A_i is placed in the position (i, j) of Q. There is a well known fact that a matrix $A = (a_{ij})_{n \times n}$ is irreducible if and only if for every pair of distinct integers p, q with $1 \leq p, q \leq n$ there is a sequence of distinct integers $k_1, k_2, \cdots, k_{m-1}, k_m = q$ such that all of the matrix entries $a_{pk_1}, a_{k_1k_2}, \cdots, a_{k_{m-1}q}$ are nonzero.

Thus nonzero blocks in $\otimes(Q; A_1, \cdots, A_r)$ which came from 1’s in each irreducible component of Q have the same size.

The converse is obvious. \hfill \Box

In the semigroup Ω_n, an elements $E \in \Omega_n$ is called a regular element if $EXE = E$ for some $X \in \Omega_n$. If $XEX = X$ in addition, then E and X are said to be semi-inverses each other. In this case, EX and XE are idempotent elements of Ω_n.

In 1973, Montague and Plemons proved that there are only a finite number of regular elements in Ω_n. What are the regular elements of Ω_n? In a survey paper ([7], see p 253) of H. Minc, it is noted that Sinkhorn [unpublished] showed that A is regular if and only if A is permutation equivalent to $J_{n_1} \oplus J_{n_2} \oplus \cdots \oplus J_{n_r}$ for some positive integers n_1, n_2, \cdots, n_r. In the following we give a proof of this fact by an argument similar to that used in the proof of Theorem 4.

If $E \in \Omega_n$ is a regular element, then all column vectors of E are eigenvectors of certain doubly stochastic matrix corresponding to the eigenvalue 1.

Now, we are ready to prove the following theorem.

THEOREM 5. An $n \times n$ matrix A in Ω_n is regular if and only if there exist permutation matrices P, Q such that

$$PAQ = J_{k_1} \oplus J_{k_2} \oplus \cdots \oplus J_{k_r}$$

where each k_i’s are positive integers with $k_1 + k_2 + \cdots + k_r = n$.

Proof. Suppose $AXA = A$ where $A, X \in \Omega_n$. Then, by Theorem 3, there exist permutation matrices P_1, P_2 such that

(1) \hspace{1cm} $P_1^TAXP_1 = J_{k_1} \oplus \cdots \oplus J_{k_r}$,

(2) \hspace{1cm} $P_2^TXAP_2 = J_{l_1} \oplus \cdots \oplus J_{l_m}$.

Since AX and XA have the same eigenvalues counting multiplicities, we have $r = m$. 406
On doubly stochastic k-potent matrices and regular matrices

Let $P_1^T AP_2$ be partitioned as

$$
P_1^T AP_2 = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1r} \\
A_{21} & A_{22} & \cdots & A_{2r} \\
\vdots & \vdots & \ddots & \vdots \\
A_{r1} & A_{r2} & \cdots & A_{rr}
\end{bmatrix}
$$

where each of A_{ij}'s is of size $k_i \times l_j$ for $i, j = 1, 2, \cdots, r$. Since all column vectors (row vectors) of A is right (left, respectively) eigenvectors of AX (XA, respectively) corresponding to the eigenvalue 1, each A_{ij} is either a positive matrix or O. Let $P_2^T XP_1$ be partitioned as that of $(P_1^T AP_2)^T$. Then (1) and (2) can be expressed as

$$
P_1^T AP_2 P_2^T XP_1 = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1r} \\
A_{21} & A_{22} & \cdots & A_{2r} \\
\vdots & \vdots & \ddots & \vdots \\
A_{r1} & A_{r2} & \cdots & A_{rr}
\end{bmatrix}
\begin{bmatrix}
C_{11} & C_{12} & \cdots & C_{1r} \\
C_{21} & C_{22} & \cdots & C_{2r} \\
\vdots & \vdots & \ddots & \vdots \\
C_{r1} & C_{r2} & \cdots & C_{rr}
\end{bmatrix}
\begin{bmatrix}
J_{k_1} & 0 & \cdots & 0 \\
0 & J_{k_2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & J_{k_r}
\end{bmatrix}
$$

(3)

and

$$
P_2^T XP_1 P_1^T AP_2 = \begin{bmatrix}
C_{11} & C_{12} & \cdots & C_{1r} \\
C_{21} & C_{22} & \cdots & C_{2r} \\
\vdots & \vdots & \ddots & \vdots \\
C_{r1} & C_{r2} & \cdots & C_{rr}
\end{bmatrix}
\begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1r} \\
A_{21} & A_{22} & \cdots & A_{2r} \\
\vdots & \vdots & \ddots & \vdots \\
A_{r1} & A_{r2} & \cdots & A_{rr}
\end{bmatrix}
\begin{bmatrix}
J_{k_1} & 0 & \cdots & 0 \\
0 & J_{k_2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & J_{k_r}
\end{bmatrix}
$$

(4)

Since the block multiplication is well defined, and since all entries of each A_{ij} are the same, we see that each of the A_{ij}'s is either positive or O. Now suppose that there are two nonzero blocks in a same block rows of $P_1^T AP_2$, say $A_{11} \neq O$ and $A_{12} \neq O$, then $P_2^T XP_1$ is of the form
Sung-Soo Pyo

\[
P_2^T X P_1 = \begin{bmatrix}
C_{11} & O & O & \cdots & O \\
C_{21} & O & O & \cdots & O \\
C_{31} & C_{32} & C_{33} & \cdots & C_{3r} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{r1} & C_{r2} & C_{r3} & \cdots & C_{rr}
\end{bmatrix}.
\]

From (4) and (5), \(C_{21} A_{11} = O \), yielding \(C_{21} = O \), a contradiction. Thus each block row of \(P_1^T A P_2 \) has exactly 1 nonzero block. Similarly, there is only one nonzero block in block column of \(P_1^T A P_2 \). This implies our assertion.

Converse is obvious. \(\square \)

From the fact that \(J_n A = A J_n = J_n \) and from Theorem 5, we have the following.

Corollary 1. Let \(A \in \Omega_n \). If the equation \(AXA = A \) is solvable in \(\Omega_n \), then

1. \(P A Q = J_{k_1} \oplus \cdots \oplus J_{k_r} \) for some permutation matrices \(P \) and \(Q \)
2. \(Q^T X P^T = B_1 \oplus \cdots \oplus B_r \) where \(B_i \in \Omega_{k_i} \) for \(i = 1, \cdots, r \).

For an \(m \times n \) real matrix \(Y \), let \(Y^+ \) denote the *Moore-Penrose generalized inverse* of \(Y \), that is, the unique \(n \times m \) matrix satisfying \(YY^+ Y = Y \), \(Y^+ Y Y^+ = Y^+ \), \((Y Y^+)^T = Y Y^T \) and \((Y^+ Y)^T = Y^+ Y \).

If \(Y \) is a square nonsingular matrix, then clearly \(Y^+ = Y^{-1} \). Furthermore, if all column vectors of \(Y \) are linearly independent, then \(Y^+ = (Y^T Y)^{-1} Y^T \).

The following corollary directly comes from previous results.

Corollary 2. Let \(A \in \Omega_n \). Then the following statements are equivalent.

1. \(A \) is regular.
2. \(P A Q = J_{k_1} \oplus \cdots \oplus J_{k_r} \) for some permutation matrices \(P \) and \(Q \)
3. \(A^T \) is the unique semi-inverse of \(A \).
4. \(A^+ \) is nonnegative.
5. \(A^+ = A^T \).

The equivalence of (1), (3), (4), (5) in Corollary 7 is proved in [9].

408
On doubly stochastic k-potent matrices and regular matrices

References

DEPARTMENT OF MATHEMATICS EDUCATION, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA

E-mail: ssryo@gauss.kyungpook.ac.kr