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MAYER-VIETORIS SEQUENCE
AND TORSION THEORY

SH. Payrovi

ABSTRACT. This work presents a new construction of Mayer-Vietoris
sequence using techniques from torsion theory and including the clas-
sical case as an example.

1. Introduction

Any reader with a basic grounding in local cohomology will recall
the important role that the Mayer-Vietoris sequence can play in that
subject. There is an analogue of the Mayer-Vietoris sequence in torsion
theory. It is our intention in this paper to present the basic theory of the
Mayer-Vietoris sequence in torsion theory. In the following R will always
be a commutative Noetherian ring and we denote by €(R) the category
of modules over B. We will begin with a quick introduction to torsion
theories, looking for the tools we will use in our construction. In section
3 we construct the Mayer-Vietoris sequence relative to a pair of torsion
functors ¢ and T.

2. Preliminaries

A torsion theory (T,F) in €(R) is a pair of non-empty classes of
R-modules satisfying:
(1) Homg(M,N) =0 for all M € T and each N € F;
(2) if Homg(X,N) =0 for all N € F, then X € T;
(3) if Homg(M,Y) =0foral M € T, then Y € F;
(4) T is closed under submodules.
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The R-modules in 7 are called torsion and those in F are called torsion
free. From the definition, it follows that 7 is closed under quotients, di-
rect sums, extensions and submodules and F is closed under submodules,
direct products, extensions and essential extensions.

It is possible to define a torsion theory from a single non-empty class
T of R-modules, closed under quotients, direct sums, extensions and
submodules (such a class is called torsion class ), by setting

F ={N € €(R) : Hom(M,N) =0 for all M € T}.

The pair (T, F) is then a torsion theory. In a similar way, we can obtain
a torsion theory from a non-empty torsion free class, i.e., a class closed
under submodules, direct products, extension and essential extension.

If (T, F) is a torsion theory, then we can consider for each R-module
M the submodule

o(M)——-Z{Ng_ M:NeT}.

It is easy to prove that o(—) defines a subfunctor of the identity functor
in €(R) satisfying the following properties : for any R-module M and any
submodule N of M we have ¢(N) = NNo(M) and o(M/o(M)) = 0.
Such a functor is called torsion functor. On the other hand, given a
torsion functor 7, the classes

T, = {M € &(R) : 7(M) = M}

and )

Fr={M € €R): (M) =0}
define a torsion theory. With this development it is possible to prove
that there exists a bijective correspondence between torsion theories and
torsion functors.

Moreover there is a one-to-one correspondence between torsion theo-
ries and idempotent filters [4, (0.4)]. We note that Gabriel’s definition
of idempotent filter [4, Page 7 | becomes shorter when one is working in
commutative algebra. We call the set of ideals A an idempotent filter
over R if it satisfies the following conditions :

(1) Re A,

(2) if Ie Aand I C J, then J € A;

(3) if I € A and J is an ideal of R such that (J:a) € Aforalla € I,
then INJ € A.

To any torsion theory (7, F) we associated the set
A ={Ianideal of R: R/I € T}.
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Then A is an idempotent filter. Conversely, given any idempotent filter
A, we call the R-module M torsion if (0:gm) € Aforallme M. In
this way we obtain a one-to-one correspondence between torsion theories
and idempotent filters. It is easy to see that, if o is a torsion functor and
A is the corresponding idempotent filter, then, when M is an R-module,

o(M)={zxe€ M:Iz=0for somel € A}.

There is a one-to-one correspondence between torsion theories in €(R)
and partitions of Spec(R) into two sets, one of them closed under spe-
cialization (see [1, Lemma (1.1)]). By saying that T" C Spec(R) is closed
under specialization, we main that, whenever p,q € Spec(R) and p C g
then p € T implies that q € T. If (T, F) is a torsion theory in €(R),
then the associated partition (T, F') of Spec(R) is given by

T ={peSpec(R): R/pe T}

and F' = Spec(R)—T. The prime ideals in T are called torsion-prime and
the prime ideals in F are called free-prime. To every partition (T, F') of
Spec(R) in which T is closed under specialization, we assign the torsion
theory in which an R-module M is torsion if and only if Assg(M) C T.

Let (T, F) be a torsion theory in €(R) and ¢ its corresponding torsion
functor. It can easily be shown that ¢ is an additive, covariant, R-linear
and left exact functor. Hence the right derived functors of o may be
formed. For each integer ¢ > 0, we denote the i-th right derived functor
of o by H;.

3. Mayer-Vietoris sequence

Throughout the paper, R will always denote a commutative Noether-
ian ring with identity. The Mayer-Vietoris sequence in torsion theory
involves two torsion functors, and so, throughout this paper, we fix our
notations as following.

Let (T, F) and (7o, Fo) be two torsion theories in €(R). Suppose that o, T
and (T, F), (U, V), where T and U are closed under specialization, denote
respectively torsion functors and partitions of Spec(R) corresponding to
(T, F) and (T, Fo)-

Set /"' =TNU and 77 = TUU. It is clear that 7’ and T" are closed
under specialization. Let (77, F') and o’ be torsion theory and torsion
functor corresponding to partition (77, F') of Spec(R). Also, we denote
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torsion theory and torsion functor corresponding to partition (77, F") of
Spec(R) by (T",F") and o”.

LEMMA 3.1. Let M be an R-module. Then o(M) and 7(M) are
submodules of ¢"(M) and ¢’(M) is a submodule of o(M) N 7(M).

Proof. Let M be an R-module and z € o(M). As we mentioned
earlier, there exists an ideal I in L(c) = {I anidealof R : R/I €
T} such that Iz = 0. Since R/I € T thus Assg(R/I) C T (see [3,
Proposition 1.4]). Now, it is clear that Assg(R/I) CTUU = T”. Hence
R/I € T" and z € ¢"(M). As above we can show that (M) is a
submodule of o”(M). In order to prove the second part, let z € o/(M).
Therefore, there exists J € L(o’) such that Jr = 0. Since L(¢’) C
L(e)N L(7) thus J € L(o) N L(7) and so z € (M) N 7(M). [

In order to prove Propositions 3.3 and 3.4, we need to following re-
mark.

REMARK 3.2. Let 0 — M % B0 Lopr &, g &,
be a minimal injective resolution for R-module M. Then
0 — o(EY /o' (E°) L5 o(BY /o' (EY) Lo ... — o(E¥)/o/(B) Lo ...
and
0 — 0"(E%)/7(E%)uis o (EY)/1(EY) L ... — (B [r(EY) 2> ...

are two complexes of R-modules and R-homomorphisms, where for all
z € o(E") and y € 0" (E*)

f':o(E) )0 (EY) — a(B™) /o' (E)
iz + ' (EY) = o(d)(z) + o' (E™)
¢+ o"(B)/r(EY) — o"(E")/7(E)
9'(y + 7(EY) = o"(d&)(y) + T(E™).
PROPOSITION 3.3. Let E*: 0 — M - E? Lop L
Ei %5 ... be a minimal injective resolution for R-module M. Then
0 — o'(E*) — o(E*) — o(E*)/d'(E*) — 0
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is an exact sequence of complexes which: results the following long exact
sequence ’

0 — H%(M) — HY(M) — ker f* — HML(M) — ...
— HL(M) — H:(M) — ker f/Imf*! — HIH M) — ....

Proof. We are concerned with a commutative diagram

0 0 0

0 — J(EY o(EY 2% g(EY/o(E) — 0
Lcr’(ul") o(d?) P

S(EY ™ G(EY/o(E') — 0

[n

~

0 — o(BEY

Jo

0 — o(E) S o(B) 24 o(BY)/o'(B) — 0
| ot |7
0 -— a'(EHl) =, U(E'”l) _hat, O’(EH])/G’(EHI) — 0

Lo

in which the rows are exact and the columns are (-sequences. Thus by
[5, Theorem 4.6.5] we get the long exact sequence

0 — HY(M) — HY(M) — ker f* — HL(M) — ...
— H,(M) — H{(M) — ker fi/Imf! — HFY M) — ... O

PROPOSITION 3.4. Let E*: 0 — M - B &, gt &,
Ei %, ... be a minimal injective resolution for R-module M. Then

0— 7(E*) — o"(E*) — "(E*)/T(E*) — O
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is an exact sequence of complexes which results the following long exact
sequence
0 — HY(M) — H%(M) — kerg® — H}M) — ...
— H{(M) — H..(M) — kerg'/Img"! — HFY(M) — ... .
Proof. The proof of (3.4) is similar to that of Proposition 3.3. a

In order to prove our main result we need the following useful lemma.

LEMMA 3.5. Let E be an injective R-module. If z € ¢”(E) then there
exist y € o(E) and z € 7(E) such that z =y + 2.

Proof. Let E = @, cspec(r) E(R/p) be a decomposition of E as a direct

sum of indecomposable modules. As we mentioned the class F” is closed
under passage to injective envelopes and direct sums; hence, if p € F”
then E(R/p) € F". So that 0"(E) = Dyery £(R/p) which is a submod-

ule of (D,cr E(R/p)) B(DB,cv E(R/p)) = o(E) P 7(E). Now, for each
z € 0"(E) there exist y € o(F) and z € 7(M) such that z =y +2. 0O

We now come to the main theorem of this paper.

THEOREM 3.6. For any R-module M, there is a long exact sequence
(called the Mayer-Vietoris sequence for M with respect to o and )

0 — Hy(M) — HY(M) P HA(M) — Ho(M) — Hy(M) — ...
— Hy (M) — Hy(M) @D Hi(M) — Hi(M) — HI' (M) — ...
Proof. Let ¢ > 0. We define
hi - o(E") /o' (E') — o"(E")/7(E")
hi(z 4 o'(EY) = z + 7(EY)
for all z € o(E?). We show that h; is an isomorphism. It is clear that

h; is an R-homomorphism. Let z € ¢”(E"). By Lemma 3.5 there exist
y € o(E") and z € 7(E*) such that z =y + z also

hily+d'(E)) =y+1(E) =y + 2+ 7(E') = z + 7(E")
thus h; is an epimorphism. Now, let = € o(F*) and
hi(z 4+ o'(EY)) =z + 7(E*) = 0.
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Thus there are I € L(o) and J € L(7) such that Iz = Jx = 0. Since
R/I € T and R/J € Ty we have V(I) C T and V(J) € U. Hence
VI+J)CUNTandso R/II+JET'. Therefore, from I +J € L(o")
and (I + J)z = 0 it follows ¢ € ¢/(E*), which is the required, i.e. h;
is an isomorphism. Furthermore, by using the commutative diagram

0 — JE) — oE) — o(E)E) — 0
N g
0 —— o'(EFY) a(EH) —p
\T(E\
—— TE;-]) — II(EH-I) Ia”(E'i*'l)/T(E"""I)—’ 0
we obtain the following commutative diagram
0 — HYM) — HAM) —  kef*  — HLM) —
-
0 — HXM) — HLM) — ker g° — HM) —

— HL,(M) — H{M) -— kerf//Imfi7t — HI\(M) —

! [

— Hi{M) — HLM) — keg/Img™t — H(M) —

with exact rows and h; is an isomorphism, for each i > 0. Now, the
reader will have no difficulty in showing that

0 — HY.(M) — HY(M)ED HY(M) — H(M) — Hy(M) —
— HL(M) — Hy (M) HA(M) — Hio(M) — H (M) —
is an exact sequence. O

Theorem 3.6 has some immediate consequences we record here.
COROLLARY 3.7. Let I and J be ideals of R. Then for any R-module
M, there is a long exact sequence (called Mayer-Vietoris sequence with
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respect to I and J)
0 — Hy,y(M) — H} (M) D H)(M) — Hiny(M) — Hi, (M) — ...
— Hi, s (M) — Hy(M) @ Hy(M) — Hjny(M) — Hi5(M) — ...

Proof. Let I be an ideal of R. Then V' (I) is closed under specialization;
hence, the partition (V(I), Spec(R) — V(I)), determines a torsion theory
in €(R) which is denote by (77, F7). On the other hand T, the local
cohomology functor with respect to I corresponds to the same partition
of Spec(R). Hence I'; is the torsion functor corresponding to (77, F)
(see (1, Remark (3.3)]). Therefore, if we consider (7, F) and (75, Fo) as
torsion theories corresponding to partitions (V(I), Spec(R) — V(I)) and
(V(J), Spec(R)—V (J)) of Spec(R), then it is easy to see that (77, F') and
(T",F") are corresponding to partitions (V(I + J), Spec(R) — V(I + J))
and (V(I N J),Spec(R) — V(I N J)) of Spec(R). Now, the statement
follows by Theorem 3.6. 0

COROLLARY 3.8. Let M be an R-module. Then
o’_depthy M > max{o_depthy M, 7_depthp, M}

and
o”_depthy M = min{o_depthy M, 7_depthp M}.

Proof. The first inequality follows by definition of ¢/_depthy M (see
[2. Definition 1.1 |) and ¢'(M) is a submodule of o(M) N 7(M). The
second part follows by Theorem 3.6 and

¢”_depthy M = inf{i > 0: H.(M) # 0}
for an R-module M (see {1, Lemma (1.3)}). 0O

DEFINITION AND REMARK 3.9. The non-empty set ® of ideals of R
is said to be a system of ideals if whenever a,b € ®, then there is an ideal
¢ € ® such that ¢ C ab.

Let ® be a system of ideals of R. Certainly the set of all ideals of
R is an idempotent filter containing ®. Let (A;);c; be the family of all
idempotent filters each of which contains ¢ and put A ={),.; A;. Then
® C A and it is clear that A is an idempotent filter. We call A the
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idempotent filter generated by ®. In [1, Proposition (3.11)] it is shown
that

A ={I anideal of R: J C I for some ideal J € ¢}

and I'p = ', where 'y is the general local cohomology functor and for
any R-module M,

Fe(M)={meM: Im=0 for some I € ®}.

Moreover, in [1, Proposition (3.11)] it is shown that A'is the set of dense
ideals corresponding to the torsion theory defined by I'y. That is

A ={I anideal of R: T's(R/I) = R/I}
={lanidealof R: V(I) C T},

where T = {p € Spec(R) : Ts(R/p) = R/p}.
Suppose that V¥ is an another system of ideals and Ay idempotent
filter generated by ¥. Hence, as above we can show that

Ag={Janidealof R: V(J) C U},
where U = {p € Spec(R) : I'y(R/p) = R/p}. Set
& = {Ianideal of R: V(I) S TNU}
and
@" = {Jan ideal of R : V(I) S TUU).

It is easy to see that &' and ®” are idempotent filters and so systems of
ideals.

COROLLARY 3.10. Let ® and ¥ be systems of ideals and A, Ay, &'
and ®" be as Remark 3.9. Then for any R-module M, there is a long
exact sequence

0—Hg, (M)—Hg(M) @D Hg (M)—Hgy(M)—Hg (M) — ...
—Hy(M)—Hy(M) D Hy(M)—Hy (M)—Hg (M) — ...

Proof. Let A be an idempotent filter. It is easy to see that, if ¢ is
a torsion functor corresponding to A then, when M is an R-module,
o(M) = Ta(M). Also, by Remark 3.9 I'y(M) = I's(M). Therefore, for
all 1 > 0 and for all R-module M, H:(M) = Hy(M). Now, by Theorem
3.6 the result follows. O
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