JORDAN DERIVATIONS IN NONCOMMUTATIVE BANACH ALGEBRAS

ICK-SOON CHANG

ABSTRACT. Our main goal is to show that if there exist Jordan derivations D, E and G on a noncommutative 2-torsion free prime ring R such that $(G^2(x)+E(x))D(x)=0$ or $D(x)(G^2(x)+E(x))=0$ for all $x \in R$, then we have D=0 or E=0, G=0.

1. Introduction

In this paper, R will represent an associative ring with center C(R), and A will represent an algebra over a complex field \mathbb{C} . The Jacobson radical of A will be denoted by rad(A). We write [x,y] for xy-yx, and use the identities $[xy,z]=[x,z]y+x[y,z], \ [x,yz]=[x,y]z+y[x,z].$ Let I be any closed (2-sided) ideal of a Banach algebra A. Then we will let Q_I denote the canonical quotient map from A onto A/I. Recall that R is prime if $aRb=\{0\}$ implies that either a=0 or b=0. An additive mapping D from R to R is called a derivation if D(xy)=D(x)y+xD(y) holds for all $x,y\in R$. And also, an additive mapping D from R to R is called a Jordan derivation if $D(x^2)=D(x)x+xD(x)$ holds for all $x\in R$.

Singer and Wermer [6] proved that every continuous derivation on a commutative Banach algebra maps the algebra into its radical. They also made a very insightful conjecture, namely that the assumption of continuity was unnecessary. This became known as the Singer-Wermer conjecture and was proved in 1988 by Thomas [7]. The so-called non-commutative Singer-Wermer conjecture was proved that every derivation D on a Banach algebra A such that $[D(x), x] \in rad(A)$ for all

Received July 13, 1999. Revised June 8, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 46H05, 47B47.

Key words and phrases: noncommutative Banach algebra, derivation, prime ring, radical.

Ick-Soon Chang

 $x \in A$ maps the algebra into its radical. Now it seems natural to ask, under additional assumptions, the range of product of continuous linear Jordan derivations on a noncommutative Banach algebra is contained in the radical. It is the purpose of this paper to show that if $(G^2(x) + E(x))D(x) \in rad(A)$ or $D(x)(G^2(x) + E(x)) \in rad(A)$ for all $x \in A$, then $D(A) \subseteq rad(A)$, or $E(A) \subseteq rad(A)$ and $G(A) \subseteq rad(A)$, where D, E and G are continuous linear Jordan derivations on a Banach algebra A.

2. The Results

To prove our main theorem, we shall need the following purely algebraic result.

LEMMA 2.1. Let R be a 2-torsion free semiprime ring. If $D: R \to R$ is a Jordan derivation, then D is a derivation.

Proof. See [1].
$$\Box$$

LEMMA 2.2. Let R be a noncommutative 2-torsion free semiprime ring. Suppose that there exist Jordan derivations $E, G : R \to R$ such that $G^2(x) + E(x) = 0$ for all $x \in R$. Then we have E = 0, G = 0.

Proof. By Lemma 2.1, E, G are derivations on R. Suppose now that

(1)
$$G^2(x) + E(x) = 0, x \in R.$$

Substituting xy for x in (1), we obtain

(2)
$$G^2(x)y + 2G(x)G(y) + xG^2(y) + E(x)y + xE(y) = 0, x, y \in \mathbb{R}$$
.

Then from (1) and (2), we get

$$(3) 2G(x)G(y) = 0, \ x, y \in R.$$

Since R is 2-torsion free, it follows (3) that

$$(4) G(x)G(y) = 0, \ x, y \in R.$$

Replacing yx for y in (4), we have

(5)
$$G(x)G(y)x + G(x)yG(x) = 0, \ x, y \in R.$$

Combining (4) with (5), clearly,

(6)
$$G(x)yG(x) = 0, \ x, y \in R.$$

By semiprimeness of R, (6) gives

$$G(x) = 0, \ x \in R.$$

From (1) and (7), we have E=0. Consequently, we obtain E=0, G=0.

THEOREM 2.3. Let R be a noncommutative 2-torsion prime ring. Suppose that there exist Jordan derivations D, E and G such that $(G^2(x) + E(x))D(x) = 0$ or $D(x)(G^2(x) + E(x)) = 0$ for all $x \in R$, then we have D = 0 or E = 0, G = 0.

Proof. Without loss of generality, it suffices to prove the case that $(G^2(x) + E(x))D(x) = 0$ for all $x \in R$. By Lemma 2.1, D, E and G are derivations. Suppose that

(8)
$$(G^2(x) + E(x))D(x) = 0, x \in R$$

The linearization of (8) leads to

(9)
$$(G^2(y) + E(y))D(x) + (G^2(x) + E(x))D(y) = 0, x, y \in \mathbb{R}.$$

Replacing yD(x) for y in (9), we have

$$\begin{aligned}
& \left\{ G^{2}(y)D(x) + 2G(y)G(D(x)) + yG^{2}(D(x)) + E(y)D(x) \\
& + yE(D(x)) \right\}D(x) + \left(G^{2}(x) + E(x)\right)D(y)D(x) + \left(G^{2}(x) + E(x)\right)yD^{2}(x) = 0, \ x, y \in R.
\end{aligned}$$

Right multiplication of (9) by D(x) leads to

(11)
$$(G^2(y) + E(y))D(x)^2 + (G^2(x) + E(x))D(y)D(x) = 0, x, y \in \mathbb{R}.$$

From (10) and (11), we obtain

(12)
$$2G(y)G(D(x))D(x) + y(G^{2}(D(x)) + E(D(x)))D(x) + (G^{2}(x) + E(x))yD^{2}(x) = 0, \ x, y \in R.$$

Substituting D(x)y for y in (12), we get

(13)
$$2D(x)G(y)G(D(x))D(x) + 2G(D(x))yG(D(x))D(x) + D(x)y(G^{2}(D(x))D(x) + E(D(x))D(x)) + (G^{2}(x) + E(x))D(x)yD^{2}(x) = 0, x, y \in \mathbb{R}.$$

Comparing (8) and (6), it is clear that

(14)
$$2D(x)G(y)G(D(x))D(x) + 2G(D(x))yG(D(x))D(x) + D(x)y(G^{2}(D(x)) + E(D(x)))D(x) = 0, \ x, y \in R.$$

Putting D(x)y instead of y in (14), it follows that

$$2D(x)^{2}G(y)G(D(x))D(x) + 2D(x)G(D(x))yG(D(x))D(x) + 2G(D(x))D(x)yG(D(x))D(x) + D(x)^{2}y(G^{2}(D(x)) +$$

 $E(D(x)))D(x)=0, \ x,y\in R.$

Left multiplication of (14) by D(x) gives

(16)
$$2D(x)^2 G(y)G(D(x))D(x) + 2D(x)G(D(x))yG(D(x))D(x) + D(x)^2 y(G^2(D(x)) + E(D(x)))D(x) = 0, x, y \in R.$$

From (15) and (16), we obtain

(17)
$$2G(D(x))D(x)yG(D(x))D(x) = 0, \ x, y \in R.$$

Since R is 2-torsion free, we get

(18)
$$G(D(x))D(x)yG(D(x))D(x) = 0, \ x, y \in R.$$

But since R is prime, we have from (18)

$$(19) G(D(x))D(x) = 0, x \in R.$$

From (14) and (19), we arrive at

(20)
$$D(x)y(G^2(D(x)) + E(D(x)))D(x) = 0, \ x, y \in R.$$

Left multiplication of (20) by $G^2(D(x)) + E(D(x))$ gives

(21)
$$\left(G^{2}(D(x)) + E(D(x))\right)D(x)y\left(G^{2}(D(x)) + E(D(x))\right)D(x)$$
$$= 0, x, y \in R.$$

By primeness of R, it follows from (21) that

(22)
$$(G^2(D(x)) + E(D(x)))D(x) = 0, \ x \in R.$$

Thus from (12), (19) and (22), we obtain

(23)
$$(G^2(x) + E(x))yD^2(x) = 0, \ x, y \in R.$$

Writing x + z instead of x in (23), we have

(24)
$$(G^2(x) + E(x))yD^2(z) + (G^2(z) + E(z))yD^2(x) = 0, x, y \in \mathbb{R}.$$

Replacing $yD^2(z)u(G^2(x) + E(x))y$ instead of y in (24),

(25)
$$(G^{2}(x) + E(x))yD^{2}(z)u(G^{2}(x) + E(x))yD^{2}(z) + (G^{2}(z) + E(z))yD^{2}(z)u(G^{2}(x) + E(x))yD^{2}(x) = 0, x, y, z, u \in R.$$

From (23) and (25),

(26)
$$(G^2(x)+E(x))yD^2(z)u(G^2(x)+E(x))yD^2(z)=0, x,y,z,u \in R.$$

Since R is prime, (26) gives

(27)
$$(G^2(x) + E(x))yD^2(z) = 0, \ x, y, z \in R.$$

But also, by primeness of R, it is obvious from (27) that

(28)
$$G^2(x) + E(x) = 0, x \in R$$

or

(29)
$$D^2(z) = 0, \ z \in R.$$

Hence if (28) holds, then by Lemma 2.2, we get E=0, G=0. Thus suppose that (29) holds. Then we consider the case that E=0 in Lemma 2.2. By Lemma 2.2, D=0. Therefore we have D=0 or E=0, G=0.

THEOREM 2.4. Let D and E,G be continuous linear Jordan derivations on a noncommutative Banach algebra A such that $(G^2(x) + E(x))D(x) \in rad(A)$ or $D(x)(G^2(x) + E(x)) \in rad(A)$ for all $x \in A$. Then $D(A) \subseteq rad(A)$, or $E(A) \subseteq rad(A)$ and $G(A) \subseteq rad(A)$.

Proof. Let J be a primitive ideal of A. Since D, E and G are continuous, by [5, Theorem 2.2], we have $D(J) \subseteq J, E(J) \subseteq J$ and $G(J) \subseteq J$. Then we can define derivations D_J, E_J and G_J on A/J by

$$D_J(x+J) = D(x) + J, \ E_J(x+J) = E(x) + J, \ G_J(x+J) = G(x) + J$$

for all $x \in A$. The factor algebra A/J is prime and semisimple, since J is a primitive ideal. By Lemma 2.1 it is obvious that D_J, E_J and G_J are derivations on a prime Banach algebra A/J. Johnson and Sincliar [3] have proved that every derivation on a semisimple Banach algebra is continuous. Combining this result with Singer-Wermer theorem, we obtain that there are no nonzero derivations on a commutative Banach algebra. Hence in case A/J is commutative, we have $D_J = 0$, $E_J = 0$ and $G_J = 0$. It remains to show that $D_J = 0$ or $E_J = 0$ and $G_J = 0$ in the case when A/J is noncommutative. Note that the intersection of all primitive ideals is the radical. The assumption of the theorem

$$(G^2(x) + E(x))D(x) \in rad(A) \ (x \in A)$$

gives

$$(G_J^2(x+J) + E_J(x+J))D_J(x+J) = J \ (x \in A).$$

Jordan derivations in noncommutative Banach algebras

All the assumptions of Theorem 2.3 are fulfilled. Thus we have $D_J = 0$ or $E_J = 0$ and $G_J = 0$. Hence we see that $D(A) \subseteq J$, or $E(A) \subseteq J$ and $G(A) \subseteq J$, since J is a primitive ideal. Therefore since J was arbitrary, $D(A) \subseteq rad(A)$, or $E(A) \subseteq rad(A)$ and $G(A) \subseteq rad(A)$.

THEOREM 2.5. Let D and E,G be linear Jordan derivations on a noncommutative semisimple Banach algebra A such that $(G^2(x) + E(x))D(x) = 0$ or $D(x)(G^2(x) + E(x)) = 0$ for all $x \in A$. Then D(A) = 0, or E(A) = 0 and G(A) = 0.

Proof. The arguments used in Theorem 2.4 carry over almost verbatim. \Box

References

- M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. 104 (1988), 1003-1006.
- [2] M. Brešar and J. Vukman, Orthogonal derivation and an extension of a Theorem of Posner, Rad. Math. 5 (1989), 237-246.
- [3] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073.
- [4] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [5] A. M. Sinclair, Continuinuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166-170.
- [6] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264.
- [7] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. 128 (1988), 435-460.
- [8] _____, A result concerning derivations in noncommutative Banach algebras, Glas. Mat. 26 (1991), 83-88.

DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, TAEJON 305-764, KOREA

E-mail: ischang@math.cnu.ac.kr