REMARKS ON APPROXIMATION OF FIXED POINTS OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS

TAE-HWA KIM* AND EUN-SUK KIM

ABSTRACT. In the present paper, we first give some examples of self-mappings which are asymptotically nonexpansive in the intermediate, not strictly hemicontractive, but satisfy the property (H). It is then shown that the modified Mann and Ishikawa iteration processes defined by $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n$ and $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n [(1 - \beta_n)x_n + \beta_n T^n x_n]$, respectively, converges strongly to the unique fixed point of such a self-mapping in general Banach spaces.

Let X be a Banach space and let K be a nonempty subset of X (not necessarily convex) and $T: K \to K$ a self mapping of K. There appear in the literature two definitions of an asymptotically nonexpansive mapping. The weaker definition (cf. Kirk[14]) requires that

$$\limsup_{n\to\infty} \sup_{y\in K} (\|T^n x - T^n y\| - \|x - y\|) \le 0$$

for every $x \in K$ and that T^N is continuous for some $N \geq 1$. The stronger definition (briefly called asymptotically nonexpansive as in [10]) requires each iterate T^n to be Lipschitzian with Lipschitz constants $L \to 1$ as $n \to \infty$. For further generalization of an averaging iteration of Schu [19], Bruck et al. [3] introduced a definition somewhere between these two: T is asymptotically nonexpansive in the intermediate sense provided T is uniformly continuous and

$$\limsup_{n\to\infty} \sup_{x,y\in K} (\|T^nx-T^ny\|-\|x-y\|) \leq 0.$$

²⁰⁰⁰ Mathematics Subject Classification: 47H06, 47H09, 47H10.

Key words and phrases: asymptotically nonexpansive in the intermediate sense, strictly pseudocontractive (or hemicontractive) mappings, strongly accretive mappings, fixed points, the property (H).

^{*}Supported by Korea Research Foundation, 1998-015-D00039.

A mapping $T: K \to X$ is said to be *pseudocontractive* [20] if for all $x, y \in K$ there exists $j \in J(x - y)$ such that

$$\operatorname{Re}\langle Tx - Ty, j \rangle \le ||x - y||^2,$$

where J denotes the normalized duality mapping from X to 2^{X^*} , i.e., with each $x \in X$, we associate the set

$$J(x) = \{ f \in X^* : ||f||^2 = ||x||^2 = \text{Re}\langle x, f \rangle \},$$

where Re(x, f) denotes the real part of f(x), the value of f at x. In [13], Kato discovered the relationship between pseudocontractive mappings and accretive mappings, proving

LEMMA K([13]). Let $x, y \in X$. Then $||x|| \le ||x + \alpha y||$ for every $\alpha > 0$ if and only if there exists $j \in J(x)$ such that $\text{Re}(y, j) \ge 0$.

Applying Lemma K, we know that a mapping T is pseudocontractive if and only if (I - T) is accretive, i.e., the inequality

$$||x-y|| \le ||x-y+r\{(I-T)x-(I-T)y\}||$$

holds for all $x,y \in K$ and all $r \geq 0$. A mapping $T: K \to X$ is said to be *strictly pseudocontractive* [7] (or [20]) if there exists t > 1 such that for all $x,y \in K$ there exists $j \in J(x-y)$ such that

$$\operatorname{Re}\langle Tx - Ty, j \rangle \le \frac{1}{t} ||x - y||^2.$$

Let F(T) denotes the set of all fixed points of T, i.e., $F(T) = \{x \in K : Tx = x\}$. If $F(T) \neq \emptyset$, the mapping $T : K \to X$ is said to be strictly hemicontractive [7] if there exists t > 1 such that for all $x \in K$ and $x^* \in F(T)$ there exists $j \in J(x - x^*)$ such that

(1)
$$\operatorname{Re}\langle Tx - x^*, j \rangle \leq \frac{1}{t} \|x - x^*\|^2.$$

Using Lemma K, it is easy to check [7] that the strict hemicontractivity of T is equivalent to the following inequality

$$||x-x^*|| \le ||(1+r)(x-x^*) - rt(Tx-x^*)||$$

holds for all $x \in K$, $x^* \in F(T)$ and r > 0.

We first introduce an example of a Lipschitzian self-mapping which is not strictly pseudocontractive but strictly hemicontractive.

EXAMPLE 1([7]). Take $X = \mathbb{R}$ with the usual norm $|\cdot|$. Let $T : \mathbb{R} \to \mathbb{R}$ be defined by

 $Tx = \frac{2}{3}x\cos x$

for all $x \in \mathbb{R}$. Obviously, $F(T) = \{0\}$ and since $\langle Tx, x \rangle = \frac{2}{3}x^2 \cos x \le \frac{2}{3}|x|^2$ for all $x \in \mathbb{R}$, T is strictly hemicontractive with $t = \frac{3}{2} > 1$. However, if we can take $x = 2\pi$ and $y = \pi$, then

$$\langle Tx-Ty,x-y\rangle=2\pi^2>\pi^2=|x-y|^2.$$

Therefore T is not strictly pseudocontractive. Further, if we can take $K = [-2\pi, 2\pi] \subset \mathbb{R}, T : K \to K$ is a Lipschitzian mapping with its Lipschitz constant $\frac{2}{3}(1+2\pi)$.

Motivated by the definition of strict hemicontractivity, we can consider a mapping $T: K \to K$ satisfying the following property, i.e., there exists t > 1 such that for all $x \in K$ and $x^* \in F(T)(\neq \emptyset)$, there exists $j \in J(x-x^*)$ such that

$$\limsup_{n\to\infty} \operatorname{Re} \langle T^n x - x^*, j \rangle \leq \frac{1}{t} \|x - x^*\|^2.$$

Obviously, any mapping $T: K \to K$ which is both strictly hemicontractive and asymptotically nonexpansive (cf. Goebel-Kirk [10]; $||T^nx - T^ny|| \le k_n||x - y||$ for all $x, y \in K$ and all $n \in \mathbb{N}$ with $\limsup_{n\to\infty} k_n \le 1$) satisfies the property (H). Here we shall give two examples of self-mappings which are asymptotically nonexpansive in the intermediate sense, not strictly hemicontractive, but satisfy the above property (H).

EXAMPLE 2. Let $X = \mathbb{R}$ with the usual norm $|\cdot|$ and let K = [0,1]. Let $a_n = \frac{1}{n}$ for each $n \in \mathbb{N}$. Then, construct a continuous mapping T as follows. On the each subinterval $[a_{n+1}, a_n]$, the graph of T consists of the sides of the isosceles triangle with base $[a_{n+1}, a_n]$ and height a_{n+1} . Thus, $Ta_n = 0$ and, if x_n denotes the midpoint of $[a_{n+1}, a_n]$, then $Tx_n = a_{n+1}$. If we further define T0 = 0, $T: K \to K$ is uniformly continuous (but, not Lipschitzian) and only $F(T) = \{0\}$.

Since $T^n x \to 0$ uniformly as $n \to \infty$, T is asymptotically nonexpansive in the intermediate sense. Indeed, for each $n \in \mathbb{N}$, there exist $x_n, y_n \in K$ such that

$$\sup_{x,y\in K}(\|T^nx-T^ny\|-\|x-y\|)=\|T^nx_n-T^ny_n\|-\|x_n-y_n\|.$$

Taking $\limsup_{n\to\infty}$ on both sides, we get

$$\limsup_{n \to \infty} (\|T^n x_n - T^n y_n\| - \|x_n - y_n\|) \le -\liminf_{n \to \infty} \|x_n - y_n\| \le 0.$$

It is obvious that T satisfies the property (H). Now assume that T is strictly hemicontractive, i.e., there exists t > 1 such that

$$\langle Tx, x \rangle \le \frac{1}{t} |x|^2$$

for all $x \in K$. If we can choose $n \in \mathbb{N}$ so that $\frac{1}{2n+1} < \frac{t-1}{t}$, it is easy to check that $\langle Tx_n, x_n \rangle = a_{n+1}x_n > \frac{1}{t}|x_n|^2$, which gives a contradiction and so T is not strictly hemicontractive.

Also, we shall give an example of a Lipschitzian mapping $T: K \to K$ (in fact, nonexpansive, i.e., $||Tx-Ty|| \le ||x-y||$ for all $x,y \in K$) in the space ℓ_2 which is not strictly hemicontractive but satisfies the property (H).

EXAMPLE 3. Take $X = \ell_2$ with the usual norm $\|\cdot\|$. Let K be the unit ball in ℓ_2 and let $f: [-1,1] \to [-1,1]$ be defined by

$$f(x) = \begin{cases} -\frac{1}{2} & \text{if } -1 \le x \le -\frac{3}{4}, \\ \frac{(2^{n+1}x - \frac{1}{2^n})}{2^{n+1} + 3} & \text{if } -\frac{2^n + 1}{2^{2n}} \le x \le -\frac{2^{n+1} + 1}{2^{2(n+1)}}, \\ 0 & \text{if } x = 0, \\ \frac{(2^{n+1}x + \frac{1}{2^n})}{2^{n+1} + 3} & \text{if } \frac{2^{n+1} + 1}{2^{2(n+1)}} \le x \le \frac{2^n + 1}{2^{2n}}, \\ \frac{1}{2} & \text{if } \frac{3}{4} \le x \le 1, \end{cases}$$

for all $x \in [-1, 1]$ and all $n \in \mathbb{N}$. Then we readily see that f is nonexpansive, i.e., $|f(x) - f(y)| \le |x - y|$ for all $x, y \in [-1, 1]$ and $F(f) = \{0\}$. Define

$$Tx = (f(x_1), f(x_2), \cdots)$$

for all $x = (x_1, x_2, \dots) \in K$. Clearly, $T : K \to K$ and $F(T) = \{0\}$, where $0 = (0, 0, \dots)$. Since

$$T^n x = (f^n(x_1), f^n(x_2), \cdots)$$

for all $x = (x_1, x_2, \dots) \in K$ and, for each $j \in \mathbb{N}$, $f^n(x_j) \to 0$ as $n \to \infty$, it immediately follows that $T^n x \to 0$ as $n \to \infty$ and so

$$\lim_{n\to\infty}\langle T^nx,x\rangle=0$$

for all $x=(x_1,x_2,\cdots)\in K$. Thus, $T:K\to K$ satisfies the property (H). However, T is not strictly hemicontractive. Indeed, if there exists t>1 such that

(2)
$$\langle Tx, x \rangle = \sum_{j=1}^{\infty} x_j f(x_j) \le \frac{1}{t} ||x||^2$$

for all $x = (x_1, x_2, \dots) \in K$. Choose $n \ge 2$ so that $\frac{1}{2^n} < (t-1)$. Setting

$$x_j = \frac{2^j + 1}{2^{2j}}$$

for all $j \geq n$ and $u = (x_n, x_{n+1}, \cdots)$, it easily follows that $||u|| \leq 1$ and

$$\langle Tu, u \rangle = \sum_{j=n}^{\infty} x_j f(x_j) > \frac{1}{t} ||u||^2$$

because $f(x_j) > \frac{1}{t}x_j$ if and only if $\frac{1}{2^j} < (t-1)$ and $\frac{1}{2^j} \le \frac{1}{2^n} < (t-1)$ for all $j \ge n$, which contradicts to the assumption (2). Therefore T is not strictly hemicontractive. It is easy to check that T is nonexpansive, i.e.,

$$||Tx - Ty|| = (\sum_{j=1}^{\infty} |f(x_j) - f(y_j)|^2)^{\frac{1}{2}} \le ||x - y||$$

for all $x = (x_1, x_2, \cdots), y = (y_1, y_2, \cdots) \in K$.

Recall that a mapping $T: K \to X$ is said to be strongly accretive [2] (or [23]) if there exists a positive number k such that for each $x, y \in K$ there is $j \in J(x-y)$ such that

$$\operatorname{Re}\langle Tx - Ty, j \rangle \ge k||x - y||^2$$
.

Using Lemma K again, this is equivalent to

$$||x-y|| \le ||x-y+r\{(T-kI)x-(T-kI)y\}||,$$

for all r > 0, where I denotes the identity mapping of X. Without loss of generality, we can assume $k \in (0,1)$. Then it was known [1] that the similar connection between strict pseudocontractivity and strong accretivity is that a mapping $T: K \to K$ is strictly pseudocontractive if and only if I - T is strongly accretive, i.e., the inequality

(3)
$$||x-y|| \le ||x-y+r\{(I-T-kI)x-(I-T-kI)y\}||$$

holds for any $x, y \in K$ and r > 0, where $k = \frac{(t-1)}{t} \in (0,1)$.

Recently, the convergence problems of Ishikawa and Mann iteration sequences (cf. Ishikawa [12] and Mann [17]) have been studied extensively by many authors (see Chidume [4-7], Deng [8], Deng-Ding [9], Haiyun-Yuting [11], Liu [15], Liu [16], Reich [18] and Tan-Xu [22]) for strictly pseudocontractive (or strongly accretive) mappings.

Especially, Liu [15] proved by the inequality (3) that the Mann iteration process converges strongly to the unique fixed point of a Lipschitzian and strictly pseudocontractive mapping, which extends corresponding results of [4-6], [22] and [23] to the general Banach spaces.

THEOREM L([15]). Let K be a nonempty closed, convex and bounded subset of a Banach space X and let $T: K \to K$ be Lipschitzian and strictly pseudocontractive mapping. If $F(T) \neq \emptyset$, then the sequence $\{x_n\}_{n=1}^{\infty}$ generated by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n, \quad x_1 \in K,$$

with $\{\alpha_n\} \subset (0,1]$ satisfying

$$\sum_{n=1}^{\infty} \alpha_n = \infty, \quad \alpha_n \to 0,$$

converges strongly to $q \in F(T)$ and F(T) is a singleton set.

The following lemma was recently proved by Haiyun-Yuting [11]. Compare our easy observation with the proof of Lemma 1.1 in [11].

LEMMA H-Y([11]). For any $x, y \in X$ and $j \in J(x + y)$,

$$||x+y||^2 \le ||x||^2 + 2Re\langle y, j \rangle.$$

Proof. For any $x, y \in X$ and $j \in J(x + y)$,

$$\begin{split} \|x\|^2 + 2 \mathrm{Re} \langle y, j \rangle - \|x + y\|^2 &= \|x\|^2 + 2 \mathrm{Re} \langle x + y - x, j \rangle - \|x + y\|^2 \\ &= \|x\|^2 - 2 \mathrm{Re} \langle x, j \rangle + \|x + y\|^2 \\ &\geq \|x\|^2 - 2 \|x\| \|x + y\| + \|x + y\|^2 \\ &= (\|x\| - \|x + y\|)^2 \geq 0. \end{split}$$

At the same time, Haiyun-Yuting [11] proved, using the above lemma, that the Ishikawa iteration process converges strongly to the unique fixed point of a continuous and strictly pseudocontractive map without Lipschitz assumption in a real uniformly smooth Banach space.

THEOREM H-Y([11]). Let K be a nonempty closed, convex and bounded subset of a real uniformly smooth Banach space X. Assume that $T: K \to K$ is a continuous strictly pseudocontractive mapping. Let $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ be two real sequences satisfying

(i)
$$0 < \alpha_n, \beta_n < 1$$
 and $\alpha_n \to 0, \beta_n \to 0$ as $n \to \infty$;

(ii)
$$\sum_{n=1}^{\infty} \alpha_n = \infty$$
.

Then the Ishikawa iterative sequence $\{x_n\}_{n=1}^{\infty}$ generated by

(4)
$$\begin{cases} x_1 \in K, \\ x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n, \\ y_n = (1 - \beta_n)x_n + \beta_n T x_n, \quad n \ge 1, \end{cases}$$

converges strongly to the unique fixed point of T.

In these respects, it seems natural to ask whether the above two theorems are still valid for any mapping $T: K \to K$ satisfying the property (H). For our affirmative argument, consider the following modified Ishikawa iteration process instead of (4):

(4')
$$\begin{cases} x_1 \in K, \\ x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n y_n, \\ y_n = (1 - \beta_n)x_n + \beta_n T^n x_n, \quad n \ge 1. \end{cases}$$

The above algorithm (4)' was used by Schu [19] and Tan-Xu [21] to show the weak convergence of the Mann and Ishikawa iteration processes to a fixed point of an asymptotically nonexpansive self-mapping.

We first begin with an easy observation of the property (H). The first equivalent is

$$(\mathrm{H}_1) \qquad \qquad \liminf_{n \to \infty} \mathrm{Re} \langle x - T^n x, j \rangle \geq \frac{(t-1)}{t} \|x - x^*\|^2.$$

Let $x \neq x^*$. For a fixed ϵ with $0 < \epsilon < \frac{(t-1)}{t}$, it follows from the property (H_1) that there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

(H₂)
$$\operatorname{Re}\langle x - T^n x, j \rangle \ge \left(\frac{t-1}{t} - \epsilon\right) \|x - x^*\|^2$$
$$= k_{\epsilon} \|x - x^*\|^2,$$

where $k_{\epsilon} := (\frac{t-1}{t} - \epsilon) \in (0,1)$. This inequality is obviously equivalent to

$$(\mathrm{H}_3) \qquad \mathrm{Re}\langle T^n x - x^*, j \rangle \leq (1 - k_{\epsilon}) \|x - x^*\|^2, \qquad \forall n \geq n_0.$$

For employing the method of the proof in [15], we need the following equivalent form of the property (H_2) by virtue of Lemma K:

$$(\mathbf{H}_4) \|x - x^*\| \le \|x - x^* + r\{(I - T^n - k_{\epsilon}I)x - (I - T^n - k_{\epsilon}I)x^*\}\|$$

for all $n \geq n_0$ and all r > 0.

Using the property (H_4) , we are now ready to present the following

THEOREM 1. Let K be a nonempty closed, convex and bounded subset of a Banach space X. Assume that $T: K \to K$ is asymptotically nonexpansive in the intermediate sense satisfying the property (H). Put

$$c_n = \max\{0, \sup_{x,y \in K} (\|T^n x - T^n y\| - \|x - y\|)\},\$$

so that $\lim_{n\to\infty} c_n = 0$. Let $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ be two real sequences satisfying

- (i) $0 \le \alpha_n, \beta_n \le 1$ and $\alpha_n \to 0, \beta_n \to 0$ as $n \to \infty$;
- (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$.

Then the modified Ishikawa iterative sequence $\{x_n\}_{n=1}^{\infty}$ generated by (4)' converges strongly to the unique fixed point of T in K.

Proof. We employ the method of the proof of Liu [15]. Since $F(T) \neq \emptyset$, take $q \in F(T)$. From the definition of $\{x_n\}$, we have

$$\begin{aligned} x_n &= x_{n+1} + \alpha_n x_n - \alpha_n T^n y_n \\ &= (1 + \alpha_n) x_{n+1} + \alpha_n (I - T^n - k_{\epsilon} I) x_{n+1} - (2 - k_{\epsilon}) \alpha_n x_{n+1} \\ &\quad + \alpha_n x_n + \alpha_n (T^n x_{n+1} - T^n y_n) \\ &= (1 + \alpha_n) x_{n+1} + \alpha_n (I - T^n - k_{\epsilon} I) x_{n+1} - (2 - k_{\epsilon}) \alpha_n [(1 - \alpha_n) x_n + \alpha_n T^n y_n] \\ &\quad + \alpha_n x_n + \alpha_n (T^n x_{n+1} - T^n y_n) \\ &= (1 + \alpha_n) x_{n+1} + \alpha_n (I - T^n - k_{\epsilon} I) x_{n+1} - (1 - k_{\epsilon}) \alpha_n x_n \\ &\quad + (2 - k_{\epsilon}) \alpha_n^2 (x_n - T^n y_n) + \alpha_n (T^n x_{n+1} - T^n y_n). \end{aligned}$$

By Tq = q, this implies that

$$x_n - q = (1 + \alpha_n)(x_{n+1} - q) + \alpha_n(I - T^n - k_{\epsilon}I)(x_{n+1} - q) - (1 - k_{\epsilon})\alpha_n(x_n - q) + (2 - k_{\epsilon})\alpha_n^2(x_n - T^n y_n) + \alpha_n(T^n x_{n+1} - T^n y_n).$$

By the property (H_4) , we obtain

$$||x_n - q|| \ge (1 + \alpha_n)||x_{n+1} - q|| - (1 - k_{\epsilon})\alpha_n||x_n - q|| - (2 - k_{\epsilon})\alpha_n^2||x_n - T^n y_n|| - \alpha_n||T^n x_{n+1} - T^n y_n||,$$

for all $n \geq n_0$. Since

$$[1 + (1 - k_{\epsilon})\alpha_{n}](1 + \alpha_{n})^{-1} \leq [1 + (1 - k_{\epsilon})\alpha_{n}](1 - \alpha_{n} + \alpha_{n}^{2})$$

$$= 1 - k_{\epsilon}\alpha_{n} + \alpha_{n}^{2} - (1 - k_{\epsilon})\alpha_{n}^{2}(1 - \alpha_{n})$$

$$\leq 1 - k_{\epsilon}\alpha_{n} + \alpha_{n}^{2},$$

it follows from the above inequality that for all $n \geq n_0$,

(5)

$$||x_{n+1} - q|| \leq [1 + (1 - k_{\epsilon})\alpha_{n}](1 + \alpha_{n})^{-1}||x_{n} - q|| + (2 - k_{\epsilon})\alpha_{n}^{2}(1 + \alpha_{n})^{-1}||x_{n} - T^{n}y_{n}|| + \alpha_{n}(1 + \alpha_{n})^{-1}||T^{n}x_{n+1} - T^{n}y_{n}|| \leq (1 - k_{\epsilon}\alpha_{n})||x_{n} - q|| + \alpha_{n}^{2}[||x_{n} - q|| + (2 - k_{\epsilon})||x_{n} - T^{n}y_{n}||] + \alpha_{n}d_{n} \leq (1 - k_{\epsilon}\alpha_{n})||x_{n} - q|| + M\alpha_{n}^{2} + \alpha_{n}d_{n},$$

where $d_n = ||T^n x_{n+1} - T^n y_n||$ and M = 3diam(K) (since K is bounded). Since $\{x_n\}$, $\{T^n x_n\}$ and $\{T^n y_n\}$ are all bounded sequences in K,

$$y_n - x_{n+1} = (\alpha_n - \beta_n)x_n + \beta_n T^n x_n - \alpha_n T^n y_n \to 0$$

as $n \to \infty$. Since $c_n \to 0$ as $n \to \infty$ we get

$$d_n = ||T^n y_n - T^n x_{n+1}||$$

$$= [||T^n y_n - T^n x_{n+1}|| - ||y_n - x_{n+1}||] + ||y_n - x_{n+1}||$$

$$\leq c_n + ||y_n - x_{n+1}|| \to 0 \quad \text{as } n \to \infty.$$

Applying Lemma 4 of [23] (or Lemma 1.2 in [11]), we have $x_n \to q$ as $n \to \infty$. Finally, we prove that $F(T) = \{q\}$, a singleton set. If

 $p \in F(T)$, by using the property (H), we obtain

$$\begin{split} \|p-q\|^2 &= \langle p-q,j \rangle \\ &= \limsup_{n \to \infty} \operatorname{Re} \langle T^n p - q,j \rangle \\ &\leq \frac{1}{t} \|p-q\|^2. \end{split}$$

Since t > 1, we have q = p.

REMARK 1. In view of the example 2 and 3, the above theorem is a new approach of the strong convergence problems of iterative sequences to the unique fixed point of self-mappings which are not strictly hemicontractive (hence, not strictly pseudocontractive). Compare this with Theorem L. Following the steps of the proof of Theorem H-Y, it is easy to see that if X is uniformly smooth and if $T: K \to K$ is a continuous mapping with the property (H) Theorem 1 is still valid.

REMARK 2. Using Lemma H-Y and the property (H₃), we can similarly prove Theorem 1. Indeed,

$$\begin{aligned} \|x_{n+1} - q\|^2 &\leq (1 - \alpha_n)^2 \|x_n - q\|^2 + 2\alpha_n \operatorname{Re}\langle T^n y_n - q, j_n \rangle \\ &\leq (1 - \alpha_n)^2 \|x_n - q\|^2 + 2\alpha_n \operatorname{Re}\langle T^n y_n - T^n x_{n+1}, j_n \rangle \\ &+ 2\alpha_n \operatorname{Re}\langle T^n x_{n+1} - q, j_n \rangle \\ &\leq (1 - \alpha_n)^2 \|x_n - q\|^2 + 2\alpha_n d_n + 2\alpha_n (1 - k_{\epsilon}) \|x_{n+1} - q\|^2 \end{aligned}$$

for $j_n \in J(x_{n+1} - q)$, where $d_n = \text{Re}\langle T^n y_n - T^n x_{n+1}, j_n \rangle \to 0$ as $n \to \infty$. In fact, since K is bounded and $c_n \to 0$ as $n \to \infty$, we obtain

$$||T^{n}y_{n} - T^{n}x_{n+1}|| = [||T^{n}y_{n} - T^{n}x_{n+1}|| - ||y_{n} - x_{n+1}||] + ||y_{n} - x_{n+1}||$$

$$< c_{n} + ||y_{n} - x_{n+1}|| \to 0 \quad \text{as } n \to \infty.$$

On the other hand, since $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\alpha_n \to 0$ as $n \to \infty$, we can choose $n_1 \ (\geq n_0)$ so that $\alpha_n > 0$, $1 - 2\alpha_n(1 - k_{\epsilon}) > 0$, and $2k_{\epsilon} - \alpha_n > 0$ for all $n \geq n_1$. Then, the above inequality can be written as follows:

(6)
$$||x_{n+1} - q||^2 \le \frac{(1 - \alpha_n)^2}{1 - 2\alpha_n(1 - k_\epsilon)} ||x_n - q||^2 + \frac{2\alpha_n d_n}{1 - 2\alpha_n(1 - k_\epsilon)}.$$

Since $\frac{2k_{\epsilon}-\alpha_n}{1-2\alpha_n(1-k_{\epsilon})} \to 2k_{\epsilon}$ as $n \to \infty$ and $k_{\epsilon} \in (0,1)$, there exists a n_2 $(\geq n_1)$ such that

$$\left|\frac{2k_{\epsilon}-\alpha_n}{1-2\alpha_n(1-k_{\epsilon})}-2k_{\epsilon}\right|\leq k_{\epsilon}$$

for all $n \geq n_2$. This implies that $k_{\epsilon} \leq \frac{2k_{\epsilon} - \alpha_n}{1 - 2\alpha_n(1 - k_{\epsilon})}$, that is,

$$\frac{(1-\alpha_n)^2}{1-2\alpha_n(1-k_{\epsilon})} \leq (1-k_{\epsilon}\alpha_n)$$

for all $n \ge n_2$. The inequality (6) can be expressed as follows.

$$||x_{n+1} - q||^2 \le (1 - k_{\epsilon} \alpha_n) ||x_n - q||^2 + \frac{2\alpha_n d_n}{1 - 2\alpha_n (1 - k_{\epsilon})},$$

for all $n \geq n_2$. Then it follows from the lemma 4 of Weng [23] that the sequence $\{x_n\}$ strongly converges to the unique fixed point q of T.

For evaluating the error estimate of the strong convergence of the Ishikawa type iteration $\{x_n\}_{n=1}^{\infty}$ generated by (4)' to the unique fixed point, in addition to all assumptions of Theorem 1, suppose that T: $K \to K$ is uniformly L-Lipschitzian, that is, there exists a constant L > 0 such that

$$||T^nx - T^ny|| \le L||x - y||,$$

for all $n \in \mathbb{N}$ and $x, y \in K$. Obviously, every nonexpansive mappings are uniformly 1-Lipschitzian.

Now we are ready to present the following error estimate of the convergence.

Theorem 2. Let K be a nonempty closed, convex and bounded subset of a Banach space X and let $T:K\to K$ a uniformly L-Lipschitzian mapping satisfying the property (H). If $\alpha_n = \frac{k_{\epsilon}}{2(3+3L+L^2)}$ and $\beta_n = \frac{k_{\epsilon}}{4L(L^2+2L-1)}$ where k_{ϵ} is the positive real number in (0,1)as in the property (H_2) and $F(T) = \{q\}$. Then the modified Ishikawa iterative sequence $\{x_n\}_{n=1}^{\infty}$ generated by (4)' converges strongly to the unique fixed point of T in K, and we obtain the estimate

$$||x_{n+1}-q||<\rho^n||x_1-q||,$$

 $\|x_{n+1}-q\|<
ho^n\|x_1-q\|,$ where $ho=1-rac{k_{\epsilon}^2}{8(3+3L+L^2)}.$

Proof. Let Tq = q. Note that

$$||x_n - T^n y_n|| \le ||x_n - q|| + L||y_n - q||$$

$$\le ||x_n - q|| + L[1 + \beta_n (L - 1)]||x_n - q||$$

$$= [1 + L + \beta_n L(L - 1)]||x_n - q||$$

and

$$||T^{n}x_{n+1} - T^{n}y_{n}|| \le L(||x_{n+1} - x_{n}|| + ||x_{n} - y_{n}||)$$

$$= L(\alpha_{n}||x_{n} - T^{n}y_{n}|| + \beta_{n}||x_{n} - T^{n}x_{n}||)$$

$$\le L[\alpha_{n}(1 + L + \beta_{n}L(L - 1)) + \beta_{n}(1 + L)]||x_{n} - q||$$

$$= [\alpha_{n}L(L + 1) + \alpha_{n}\beta_{n}L^{2}(L - 1) + \beta_{n}L(L + 1)]||x_{n} - q||.$$

Combined with the inequality (5), the required estimate is now obtained.

$$\begin{aligned} \|x_{n+1} - q\| &\leq (1 - k_{\epsilon} \alpha_{n}) \|x_{n} - q\| + \alpha_{n}^{2} [\|x_{n} - q\| + (2 - k_{\epsilon}) \|x_{n} - T^{n} y_{n}\|] \\ &+ \alpha_{n} \|T^{n} x_{n+1} - T^{n} y_{n}\| \\ &\leq (1 - k_{\epsilon} \alpha_{n}) \|x_{n} - q\| + \alpha_{n}^{2} [1 + (2 - k_{\epsilon}) (1 + L + \beta_{n} L(L - 1))] \|x_{n} - q\| \\ &+ \alpha_{n} [\alpha_{n} L(L + 1) + \alpha_{n} \beta_{n} L^{2} (L - 1) + \beta_{n} L(L + 1)] \|x_{n} - q\| \\ &\leq (1 - k_{\epsilon} \alpha_{n}) \|x_{n} - q\| + \alpha_{n}^{2} [1 + (2 - k_{\epsilon}) (1 + L) + L(L + 1)] \|x_{n} - q\| \\ &+ \alpha_{n} \beta_{n} [(2 - k_{\epsilon}) L(L - 1) + L^{2} (L + 1) + L(L + 1)] \|x_{n} - q\| \\ &< (1 - k_{\epsilon} \alpha_{n}) \|x_{n} - q\| + \alpha_{n}^{2} (3 + 3L + L^{2}) \|x_{n} - q\| \\ &+ \alpha_{n} \beta_{n} L(L^{2} + 2L - 1) \|x_{n} - q\| \\ &= \left[1 - \frac{k_{\epsilon}^{2}}{8(3 + 3L + L^{2})}\right] \|x_{n} - q\| \\ &= \rho \|x_{n} - q\|. \end{aligned}$$

Hence $||x_{n+1} - q|| < \rho^n ||x_1 - q||$.

Taking $\beta_n = 0$ for all $n \ge 1$ in Theorem 1, we have the following

COROLLARY 1. Let K be a nonempty closed, convex and bounded subset of a Banach space X. Assume that $T: K \to K$ is asymptotically nonexpansive in the intermediate sense satisfying the property (H). Put

$$c_n = \max\{0, \sup_{x,y \in K} (\|T^n x - T^n y\| - \|x - y\|)\},$$

so that $\lim_{n\to\infty} c_n = 0$. Then the modified Mann iterative sequence $\{x_n\}_{n=0}^{\infty}$ generated by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n, \quad x_1 \in K$$

with $\{\alpha_n\}_{n=1}^{\infty} \subset (0,1]$ satisfying

$$\sum_{n=1}^{\infty} \alpha_n = \infty, \quad \alpha_n \to 0,$$

strongly converges $q \in F(T)$ and F(T) is a singleton set.

REMARK 4. Compared with Theorem L and Theorem H-Y, our iterative algorithm can be applicable to the approximating problems of all continuous mappings with the property (H) in the finite dimensional spaces.

References

- [1] J. Bogin, On strict pseudo-contractions and a fixed point theorem, Technion preprint series No. MT-219, Haifa, Israel, 1974.
- [2] F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.
- [3] R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math. 65 (1993), no. 2, 169-179.
- [4] C. E. Chidume, Iterative approximation of fixed points of Lipschitz strictly pseudo-contractive mappings, Proc. Amer. Math. Soc. 99 (1987), no. 2, 283– 288.
- [5] _____, An iterative process for nonlinear Lipschitzian strongly accretive mappings in L_p spaces, J. Math. Anal. Appl. 151 (1990), 453-561.
- [6] _____, Approximation of fixed points of strongly pseudo-contractive mappings, Proc. Amer. Math. Soc. 120 (1994), 545-550.
- [7] _____, Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces, Numer. Funct. Anal. & Optimiz. 15 (1994), 779-790.
- [8] L. Deng, An iterative process for nonlinear Lipschitzian and strongly accretive mappings in uniformly convex and uniformly smooth Banach spaces, Acta Appl. Math. 32 (1993), 183-196.
- [9] L. Deng and X. P. Ding, Iterative approximation of Lipschitz strictly pseudocontractive mappings in uniformly smooth Banach spaces, Nonlinear Anal. TMA 24 (1995), 981-987.

- [10] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
- [11] Z. Haiyun and J. Yuting, Approximation of fixed points of strictly pseudocontractive maps without Lipschitz assumption, Proc. Amer. Math. Soc. 125 (1997), 1705-1709.
- [12] S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), no. 1, 147-150.
- [13] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1964), 508-520.
- [14] W. A. Kirk, Fixed point theorems for non-lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974), 339-346.
- [15] L. Liu, Approximation of fixed points of strictly pseudocontractive mapping, Proc. Amer. Math. Soc. 125 (1997), 1363-1366.
- [16] L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, Jour. Math. Anal. Appl. 194 (1995), 114– 125.
- [17] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- [18] S. Reich, An iterative procedure for constructing zeros of accretive sets in Banach spaces, Nonlinear Anal. TMA 2 (1978), 85-92.
- [19] J. Schu, Iterative contraction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991), 407-413.
- [20] _____, Approximating fixed points of Lipschitzian pseudocontractive mappings, Houston J. Math. 19 (1993), 107-115.
- [21] K. K. Tan and H. K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122 (1994), 733-739.
- [22] _____, Iterative solution to nonlinear equations and strongly accretive operators in Banach spaces, J. Math. Anal. Appl. 178 (1993), 9-21.
- [23] X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math. Soc. 113 (1991), no. 3, 727-731.

DEPARTMENT OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY, PUSAN 608-737, KOREA

E-mail: taehwa@dolphin.pknu.ac.kr