A UNIQUE COMMON FIXED POINT THEOREM FOR A SEQUENCE OF SELF-MAPPINGS IN MENGER SPACES

BINAYAK S. CHOUDHURY

ABSTRACT. In this paper, a unique common fixed point theorem for a sequence of mutually contractive and commuting sequence of self mappings on Menger spaces has been proved.

1. Introduction

DEFINITION 1.1 (Menger spaces [3]). A Menger space is a triplet (M, F, t) where M is a non-empty set and F is a mapping on $M \times M$ to the set of distribution functions such that,

- (a) $F_{xy}(0) = 0$ for all $x, y \in M$
- (b) $F_{xy}(s) = 1$ for all s > 0 if and only if x = y
- (c) $F_{xy} = F_{yx}$ for all $x, y \in M$
- (d) $F_{xy}(u+v) \ge t(F_{xz}(u), F_{zy}(v))$ for all $u, v \ge 0$ and $x, y, z \in M$, where t is t-norm, that is a function $t : [0,1] \times [0,1] \to [0,1]$ which satisfies for all $a, b, c, d \in [0,1]$,
- (i) t(1, a) = a
- (ii) t(a,b) = t(b,a)
- (iii) $t(c,d) \ge t(a,b)$ if $c \ge a$ and $d \ge b$
- (iv) t(t(a,b),c) = t(a,t(b,c)).

By a distribution function F, we mean a left continuous non-decreasing function from R to [0,1] with

$$\inf_{x \in R} F(x) = 0 \text{ and } \sup_{x \in R} F(x) = 1.$$

Received February 22, 1999. Revised January 21, 2000. 2000 Mathematics Subject Classification: 54H25. Key words and phrases: Menger space, fixed point.

Binayak S. Choudhury

The following are a few necessary concepts associated with the concept of convergence in a Menger space ([1], [2], [3]).

A sequence $\{p_n\} \subset M$ is said to converge to a point $p \in M$ if given $\epsilon > 0$ and $\lambda > 0$, we can find a positive integer $N_{\epsilon,\lambda}$ such that

$$F_{p_np}(\epsilon) > 1 - \lambda \text{ for all } n > N_{\epsilon,\lambda}.$$

A sequence $\{p_n\} \subset M$ is said to be a Cauchy sequence in M if given $\epsilon > 0$ and $\lambda > 0$, we can find a positive integer $N_{\epsilon,\lambda}$ such that

$$F_{p_m p_n}(\epsilon) > 1 - \lambda$$
 for all $m, n > N_{\epsilon, \lambda}$.

A Menger space is said to be complete if every Cauchy sequence in M is convergent in M.

DEFINITION 1.2. A sequence $\{T_i\}_1^{\infty}$ of self-mappings on a complete Menger space is said to be mutually contractive if for s > 0,

$$(1.1) F_{T_i x T_i y}(s) \ge F_{xy}(s/p)$$

where $x, y \in M$, $0 , <math>i \neq j$ and $x \neq y$.

2. Main results

In this section, we prove a unique common fixed theorem for a sequence of self-mappings on Menger spaces. We also obtain a corresponding result is metric spaces.

THEOREM 2.1. Let (M, F, t) be a complete Menger space and $\{T_i\}_{1}^{\infty}$ be a sequence of self-mappings on M such that

- (a) T_i is continuous for all $i = 1, 2, \ldots$
- (b) $\{T_i\}_{1}^{\infty}$ is mutually contractive (Definition 1.2)
- (c) $T_i T_j = T_j T_i$ for all i, j = 1, 2, ...

Then $\{T_i\}_{1}^{\infty}$ has a unique common fixed point.

A unique common fixed point theorem

Proof. Starting with any $x_0 \in M$ we construct a sequence $\{x_n\} \subset M$ as follows:

$$(2.1) x_0 \in M, x_1 = T_1 x_0, x_2 = T_2 x_1, \ldots, x_n = T_n x_{n-1}, \ldots$$

The following cases may arise.

Case-I No two consecutive x_n s are equal. Then for any s > 0,

$$(2.2) F_{x_n x_{n+1}}(s) = F_{T_n x_{n-1} T_{n+1} x_n}(s) \ge F_{x_{n-1} x_n}(s/p) (by (1.1)).$$

By repeated application of (2.2), we obtain

$$(2.3) F_{x_n x_{n+1}}(s) \ge F_{x_0 x_1}(s/p^n).$$

Then

$$(2.4)$$

$$F_{x_{n}x_{n+k}}(s)$$

$$\geq t \left(F_{x_{n}x_{n+1}}\left(\frac{s}{k}\right), F_{x_{n+1},x_{n+k}}\left(\frac{k-1}{k}s\right)\right)$$

$$\geq t \left(F_{x_{n}x_{n+1}}\left(\frac{s}{k}\right), t\left(F_{x_{n+1},x_{n+2}}\left(\frac{s}{k}\right), \dots\right)\right)$$

$$\geq t \left(F_{x_{0}x_{1}}\left(\frac{s}{kp^{n}}\right), t\left(F_{x_{0}x_{1}}\left(\frac{s}{kp^{n-1}}\right), \dots\right)$$

$$t \left(F_{x_{0}x_{1}}\left(\frac{s}{kp^{n+k-2}}\right), F_{x_{0}x_{1}}\left(\frac{s}{kp^{n+k-1}}\right), \dots\right)\right)$$

$$\geq F_{x_{0}x_{1}}\left(\frac{s}{kp^{n}}\right).$$

(2.4) implies that $\{x_n\}$ is a Cauchy sequence in M[3]. Hence it is convergent in M. Let

$$(2.5) x_n \to z (say) as n \to \infty.$$

Binayak S. Choudhury

Since two consecutive terms of $\{x_n\}$ are unequal, for an arbitrary integer i, s > 0 and $\lambda > 0$, we can find n such that $z \neq x_{n-1}, n > i$,

(2.6)
$$F_{z,x_n}(s/2) > 1 - \lambda$$
 and $F_{zx_{n-1}}(s/2) > 1 - \lambda$.

$$\begin{split} F_{zT_{i}z}(s) &\geq t \Big(F_{zx_{n}}(s/2), F_{x_{n}T_{i}z}(s/2) \Big) \\ &= t \Big(F_{zx_{n}}(s/2), F_{T_{n}x_{n-1}T_{i}z}(s/2) \Big) \\ &\geq t \Big(F_{zx_{n}}(s/2), F_{x_{n-1}z}(s/2) \Big) \text{ (since } z \neq x_{n-1}) \\ &\geq 1 - \lambda. \qquad \big(\text{ by } (2.6) \big) \end{split}$$

Since s > 0 and $\lambda > 0$ are arbitrary, $F_{zT_iz}(s) = 1$ for all s > 0, that is, $z = T_i z$ for all $i = 1, 2, \ldots$

Case-II $x_i = x_{i-1}$ for some integer i. Then $x_{i-1} = T_i x_{i-1}$. Let

(2.7)
$$z = x_{i-1} \text{ i.e. } T_i z = z.$$

Let

$$z \neq T_j z$$
 for some j .

Let further

(2.8)
$$z \neq T_i^n z$$
 for all $n = 1, 2, \dots$

Then, for s>0

$$F_{zT_j^2z}(s) = F_{T_izT_j(T_jz)}(s)$$

$$\geq F_{z,T_iz}(s/p) \text{ (since } z \neq T_iz)$$

$$egin{aligned} F_{zT_{j}^{3}z}(s) &= F_{T_{i}zT_{j}(T_{j}^{2}z)}(s) \ &\geq F_{z,T_{j}^{2}z}(s/p) \ &\geq F_{z,T_{i}z}(s/p^{2}). & ext{(since } z
eq T_{i}^{2}z) \end{aligned}$$

A unique common fixed point theorem

In this way,

(2.9)
$$F_{zT_i^n z}(s) \ge F_{zT_j z}(s/p^{n-1}), \ n = 2, 3, \dots$$

where $z \neq T_j^n z$ for all n = 1, 2, ...Making $n \to \infty$ in (2.9), we see that

$$(2.10) T_j^n z \to z as n \to \infty.$$

Again T_j is continuous, therefore,

(2.11)
$$T_j(T_j^n z) = T_j^{n+1} z \to T_j z \text{ as } n \to \infty.$$

But in a Menger space any sequence can converge to at most one point. Therefore, $z=T_jz,\,j=1,2,\ldots$

This is a contradiction, so $z = T_j^k z$ for some k. Let k be the smallest integer with this property. Then

(2.12)
$$z \neq T_i^m z$$
 for some $m = 1, 2, ..., k-1$.

For s > 0,

$$\begin{split} F_{T_{j}^{k-1}zz}(s) &= F_{T_{j}(T_{j}^{k-2}z)T_{i}z}(s) \\ &\geq F_{T_{j}^{k-2}z,z}(s/p) \text{ (by (1.2) and (2.12))} \\ &= F_{T_{j}(T_{j}^{k-3}z)T_{i}z}(s/p) \\ &\geq F_{T_{j}^{k-3}z,z}(s/p^{2}) \text{ (by (1.1) and (2.12))} \\ &\geq \dots \\ &\geq F_{T_{i}zz}(s/p^{k-2}). \end{split}$$

(2.12) and (2.13) show that z, $T_j z$, $T_j^2 z$, ..., $T_j^{k-1} z$ are all distinct.

Then for s > 0,

$$\begin{split} (2.14) & F_{zT_{j}z}(s) = F_{T_{j}^{k}zT_{j}T_{i}z}(s) \\ & = F_{T_{j}(T_{j}^{k-1}z)T_{i}(T_{j}z)}(s) \quad (\text{since } T_{i}T_{j} = T_{j}T_{i}) \\ & \geq F_{T_{j}^{k-1}z,T_{j}z}(s/p) \quad (\text{by } (1.1) \text{ and since } T_{j}^{k-1}z \neq T_{j}z) \\ & \geq F_{T_{j}^{k-2}z,T_{j}z}(s/p^{2}) \\ & \geq \cdots \\ & \geq F_{T_{j}^{2}zT_{j}z}(s/p^{k-2}) \\ & = F_{(T_{j}^{2}T_{i}z)T_{j}z}(s/p^{k-2}) \\ & = F_{T_{i}(T_{j}^{2}z)T_{j}z}(s/p^{k-2}) \\ & \geq F_{T_{j}^{2}zz}(s/p^{k-1}) \quad (\text{since } T_{j}^{2}z \neq z) \\ & = F_{T_{j}(T_{j}z)T_{i}z}(s/p^{k-1}) \\ & \geq F_{T_{j}zz}(s/p^{k}) \quad (\text{since by our assumption } T_{j}z \neq z). \end{split}$$

(2.14) thus gives a contradiction. Hence $z = T_j z$ for all $j = 1, 2, \ldots$. Next we prove the uniqueness. If possible let z_1 and z_2 be two common fixed points such that $z_1 \neq z_2$. Then for s > 0,

(2.15)
$$F_{z_1 z_2}(s) = F_{T_i z_1 T_j z_2}(s) \text{ (here } i \neq j)$$
$$\geq F_{z_1 z_2}(s/p)$$

(2.15) is a contradiction. Therefore, $z_1 \neq z_2$, that is, the fixed point is unique.

This completes the proof of the theorem.

We state the following result in metric space as a corollary.

COROLLARY. Let (X,d) be a complete metric space such that the following conditions are satisfied with a sequence $\{T_i\}_1^{\infty}$ of self-mappings

A unique common fixed point theorem

defined on X such that

(2.16) (a)
$$T_i$$
 is continuous for all $i=1,2,...$
(b) $T_iT_j=T_jT_i$ for all $i,j=1,2,...$
and (c) $d(T_ix,T_iy) \leq pd(x,y)$ for all $x,y \in X$

with $x \neq y$, for all i, j = 1, 2, 3, ... with $i \neq j$ and 0 .Then the sequence of self-mappings has a unique common fixed point.

The proof of the corollary is complete in observing that a complete metric space (X,d) may be treated as a complete Menger space if we put $F_{xy}(s) = H(s - d(x,y))$ where H is the heaviside function and $t(a,b) = \min\{a,b\}[3]$. It may be seen that (2.16) then implies (1.1). The corollary is then proved by the application of the theorem.

References

- V. I. Istratescu, Fixed Point Theory, D. Reidal Publishing Company, London, 1981.
- [2] B. Schweizer and A. Sklar, Statistical Metric Spaces, Pacific J. Math. 10 (1960), pp. 313-334.
- [3] ______, Probabilistic Metric Spaces, Elsevier Science Publishing Co. Inc. New York, 1983.

DEPARTMENT OF MATHEMATICS, BENGAL ENGINEERING COLLEGE, DEEMED UNIVERSITY, HOWRAH-711 103, WEST BENGAL, INDIA E-mail: math@becs.ernet.in