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TOPOLOGICAL PROPERTIES OF SOME
COHOMOGENEITY ONE RIEMANNIAN
MANIFOLDS OF NONPOSITIVE CURVATURE

R. MIRZAIE AND S. M. B. KASHANI

ABSTRACT. In this paper we study some nonpositively curved Rie-
mannian manifolds acted on by a Lie group of isometries with prin-
cipal orbits of codimension one. Among other results it is proved
that if the universal covering manifold satisfies some conditions then
every nonexceptional singular orbit is a totally geodesic submanifold.
When M is flat and is not toruslike, it is proved that either each orbit
is isometric to RF x T™ or there is a singular orbit. If the singular
orbit is unique and nonexceptional, then it is isometric to R¥ x T™.

1. Introduction

Recently, cohomogeneity one Riemannian manifolds have been stud-
ied from different points of view. A. Alekseevsky and D. Alekseevsky in
[1] and [2] gave a description of such manifolds in terms of Lie subgroups
of a Lie group G, F. Podesta and A. Spiro in [13] got some nice results in
negatively curved case, C. Searle in [14] provided a complete classification
of such manifolds in dimensions less than 6 when they are compact and
of positive curvature. The aim of this paper is to deal with some nonpos-
itively curved cohomogeneity one Riemannian manifolds. We generalize
some of the theorems of [13] to the case where M is a product of nega-
tively curved manifolds. Also in section 4 we study some cohomogeneity
one flat Riemannian manifolds. Our main results are theorems 3.5, 3.7,
3.10 and 4.4.
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2. Preliminaries

DEFINITION 2.0. Let M be a complete Riemannian manifold and G a
Lie group of isometries which is closed in the full group of isometries of
M. We say that M is of cohomogeneity one under the action of G if G
has an orbit of codimension one.

It is known (see [1] and [4], [11]) that the orbit space 2 = M is a

topological Hausdorff space homeomorphic to one of the following spaces:
R,SY,RT = [0,+00) and [0,1]. In the following we will indicate by
k : M — § the projection to the orbit space. Given a point z € M,
the orbit D = Gz is called principal (resp. singular) if the corresponding
image in the orbit space is an internal (resp. boundary) point of ,
and the point z is called a regular (resp. singular) point. We say that a
singular orbit is exceptional if it has codimension one. Also note that the
principal orbits are diffeomorphic to each other and M is diffeomorphic

M
tonle-é-—R.

If G, is the isotropy subgroup of G at p, (p € M), then G, and G, are
conjugate if both z,y are regular, while G, is conjugate to a subgroup of
G, if z is regular and y is singular.

DEFINITION 2.1. A (complete) geodesic v on a Riemannian manifold
of cohomogeneity one is called a normal geodesic if it crosses each orbit
orthogonally.

We know (see [2]) that a geodesic 7 is a normal geodesic if and only
if it is orthogonal to each orbit Gz at one point x € <, and that each
regular point belongs to a unique normal geodesic.

DEFINITION 2.2. A differentiable real valued function F on a complete
Riemannian manifold M is said to be convex (resp. strictly convex) if
for each geodesic v : R — M the composed function Foy : R — R is
convex (resp. strictly convex), that is (Foy)” > 0 (resp. (Foy)” > 0).

Let ¢ be an isometry of a simply connected Riemannian manifold
M, the squared displacement function of ¢ is the function defined by

d?p(p) = d*(p, ¢(p)),p € M, where d denotes the distance on M.
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In the next proposition, we list some known properties of cohomogene-
ity one Riemannian manifolds, which we will use in the sequel.

PROPOSITION 2.3 ([4], [8] and [13]). Let M be a cohomogeneity one
Riemannian manifold under the action of a connected Lie group G which
is closed in the full isometry group of M, then
(a) If M is simply connected with nonpositive curvature, there is at most
singular orbit.

(b) If M has nonpositive curvature and B is the unique singular orbit of
M, 7T1(M) = 7T1(B).

(c) If M is simply connected no exceptional orbit may exist.

(e) If M is simply connected and without singular orbit, then Q # S! i.e.,
Q=R.

(d) No exceptional orbit is simply connected.

(f) If v is a normal geodesic then the map k : v — §Q is surjective and it
defines a covering over the set §° of internal points of ). When =
R* or R, we can endow ) with the metric given by the covering k.

The following proposition and theorems will be needed later.

PROPOSITION 2.4(see [3]). Let M be a simply connected and com-

plete Riemannian manifold of nonpositive curvature, then

(a) If the minimum point set C of a real valued convex function F defined
on M is a submanifold of M then C is totally geodesic in M, and
each critical point of F belongs to C.

(b) d? is a convex function for each isometry ¢ of M and if M has
negative curvature it is strictly convex except at the minimum point
set C which is at most the image of a geodesic.

THEOREM 2.5 ([15]). Let M be a connected homogeneous Riemann-
ian manifold with nonpositive curvature, then M is diffeomorphic to the
product of a torus and a Euclidean space.

THEOREM 2.6 ({9]). Let M be a homogeneous Riemannian manifold
with nonpositive curvature and negative definite Ricci tensor then M is
simply connected.
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3. Cohomogeneity one UND manifolds

Throughout the following M will denote a complete Riemannian mani-
fold of dimension n with nonpositive curvature and of cohomogeneity one
under the action of G, a connected Lie group which is closed in the full
group of isometries of M. If M is not simply connected then M will
denote the universal Riemannian covering manifold of M endowed with
the pulled back metric and 7 : M — M will be the covering projection,
with the symbol A we will denote the deck transformation group of the
universal covering of M. We know (see [4] page 63) that the group G
always admits a connected covering group G which acts on M by isome-
tries and of cohomogeniety one, the projection 7 : G — G is such that

7(g)(z) = m(g(y)) forall g € G,z € M and |y € 77'(z). Moreover A cen-
teralizes G, so that it maps G-orbits onto G-orbits, so for each ¢ € A, d2
is constant along orbits.

DEFINITION 3.0. We say that a Riemannian manifold M is universally
and negatively decomposable(UND) when its universal covering manifold
M decomposes as M = M x My x ... x M and for each 1, M; has negative
curvature and each ¢ € A decomposes as @ = Y1 X P2 X ... X @ Where
©; is an isometry of M;.

EXAMPLE 3.0(A). If M = M; x M, x ... x My and for each i, M; has
negative curvature then M is a UND manifold.

ExAMPLE 3.0(B). If the factors of the de Rham decomposition of M
have negative curvature and A C I°(M) (I°(M) is the connected com-

ponent of the identity in the Lie group of isometries of M), then M is a
UND manifold (see [9] vol 1 page 240).

LEMMA 3.1. If M = M; x M, is a complete simply connected Rie-
mannian manifold of nonpositive curvature such that for a geodesic y(t) =
(m(t),12(t)) and for an isometry ¢ = 1 X 3, di, 071 : R — R is strictly
convex, then diov : R — R is a strictly convex function.
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Proof. let d, d1 and d; be distance functions of M, M; and M, and
my = (Z1,y1), M2 = (2, y2) be two points of M. It is easy to show that
d*(my, mp) = d1($1’$2)+d2(y1;y2) so we have dj0y(t) = d*(7(t), ¢v(t)) =
&, 0m1(t) + d3,,072(t), d},,02 is convex by theorem 2.4(b) and d}, om is
strictly convex by assumption. Since the sum of a convex function with a
strictly convex function is strictly convex, we get that d¢ (t) is strictly
convex. O

LEMMA 3.2. If ¢ € A is nontrivial and for a normal geodesic v,
dfao'y : R — R does not have any minimum point then, ¢ maps each

orbit D onto itself.

Proof. Since F(t) = d%0v(t) does not have any minimum point and it
is a convex function, for each t; # t; we have F(t,) # F(t;) (since other-
wise, there exists a minimum point between ¢, and t,). Let D1 é"y(tl)
and Dy = G'y(tz) be two distinct orbits such that go(Dl) C D,, and let
p(7(t1)) = z € Dy. We have d(y(t),p¥(t1)) = d(pv(tr)), ¥*¥(t1)) =
d(z, p(x)) = d®(v(t2), vy(t2)), where the last equality comes from the
fact that d? is constant along orbits. Therefore we get that F(t;) = F(t),
which is a contradiction. a

LEMMA 3.3. Let M be a UND cohomogeneity one Riemannian man-
ifold and let ¢ € A be nontrivial, then there exists a normal geodesic v
on M such that d207 R — R is a strictly convex function.

Proof. Let M= Ml X M2 X ... X Mk be the decomposition of M and
¥ = @1 X pg X ... X @ Without lose of generality let ¢; be nontrivial,
and let () = (m(¢), ¥2(t), ..., 7(t)) be a normal geodesic in M such that
the image of ; is not the minimum point set of d"l’q,1 : M, > R (Since
the union of the images of all normal geodesics equals to M, we can find

such a v by 2.4(b)). As d}, 071 : R — R is strictly onvex by 2.4(b), we

get the result by 3.1. O

LEMMA 3.4. Let vy be a normal geodesic in M and @ € A be such that
déo'y : R — R is strictly convex and t; € R is not a minimum point of

the function F(t) = d2ov(t), then the orbit B = G~(t,) is a hypersurface
inM.
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Proof. Since d?, is constant along orbits we conclude that Gr(ty) does
not have any minimum point of d2, so by 2.4(a) it does not have any
critical point of d2. Since Gy(t,) is a component of (d2)~!(F(t;)) we get
the result by regular value theorem. O

THEOREM 3.5. If M is a nonsimply connected UND cohomogeneity
one Riemannian manifold with only one singular orbit B, and B is not
exceptional, then it is a totally geodesic submanifold of M diffeomorphic
to R¥ x T™ and m (M) = Z™.

Proof. First note that since dim 7~!(B) = dimB < n — 1, each
component of 77!(B) must be a nonexceptional singular orbit in M.
Therefore by 2.3(a), 7~(B) has only one component B. Now let p € A
be a nontrivial deck transformation and v a normal geodesic in M such
that F = d20y : R — R is a strictly convex function (see 3.3), then we
have two cases.

Case 1: F has only one minimum point ty € R.

In this case since d2 is constant along orbits, we get that Gr(to) is the
minimum point set of di, so by 2.4(a) it is a totally geodesic submanifold
of M. We show that B = é.’y(to). If not, then B = Gv(t),t, # to,
so by 3.4 B must be a hypersurface in M, since dimB < n — 1 this is
a contradiction, therefore B = é’y(to) and B is a totally geodesic sub-
manifold of M. Consequently B = TI'(B) is totally geodesic in M, so is
of nonpositive curvature. Since B is homogeneous we get by 2.5 that B
is diffeomorphic to R* x T™ and by 2.3(b) we have m(M) = m(B) = Z™.

Case 2: F has not any minimum point. ~
This case can not occur because by 3.4 each orbit of M must be a hy-
persurface, so B is a hypersurface, which is in contrast with the fact dim
B<n-1. O

LEMMA 3.6. If for each deck transformation ¢ € A and each orbit D
in M, maps D onto itself and if there is no singular orbit in M, then
each orbit D in M is diffeomorphic to R¥ x T™.

Proof. The proof of this lemma in given in a portion of the proof of
theorem 3.7 in [4] and the sketch of the proof is as follows: for an orbit D
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- . G -
in M, 7~!(D) has only one component D and D = 7 with K maximal
compact in G. So there is a solvable subgroup H acting transitively on

~ D ~
D. Since D = — and A centeralizes G (and hence H too). we obtain

that H acts transitively on D, so D is a solvmanifold and diffeomorphic
to a product R* x T™ (see [13] page 76 and [6]). O

THEOREM 3.7. If M is a nonsimply connected UN D cohomogeneity
one Riemannian manifold without any singular orbit, then each orbit

M
is diffeomorphic to R¥ x T™. In this case if vl R, then M is
diffeomorphic to R* x T™, k = k; + 1.

Proof. By 3.3 for each nontrivial ¢ € A, there is a normal geodesic vy
(related to @) such that df,O'y is a strictly convex function. We have two
cases.

Case 1: There exists a ¢ € A such that dgo'y has a minimum point
to € R.

In this case the orbit B = G~'y(t0) is the minimum point set of the function
d?%. Therefore by 2.4 (a) it is totally geodesic and so B = m(B) is totally
geodesic in M, hence is of nonpositive curvature. Since B is homogeneous,
it is diffeomorphic to R¥ x T™ by 2.5. From the fact that the (principal)
orbits are diffeomorphic we get that each orbit is diffeomorphic to R* x
TmM,

Case 2: For each nontrivial ¢ € A,dﬁo*y does not have any minimum
point. _

In this case by 3.2, ¢ maps each orbit D onto itself. Therefore by 3.6
each orbit D in M is diffeomorphic to R*t x T™.

If % = R, from the fact that M is diffeomorphic to —Ag— x D we get that
M is diffeomorphic to R x R¥ x T™ = R* x T™. O
LEMMA 3.8. Let M = My x M, and X = X, + X5, Z be two vectors

at the point p = (p1,p2) such that X, Z are tangent to M, and X is
tangent to My, then Ky (X, Z) = Kp, (X4, Z).

Proof. M = M; x M, is a warped product by the warping func-
tion f = 1, so by using theorem 42 in [12] page 210 we have RxZX =
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Rx,+x,Z2(X1+X3) = Rx,ZX1+Rx, ZXo+Rx,ZX1+Rx,ZX; = Rx,ZX, €
Tlel. Therefore KM(X,Z) ‘:KMI(XlaZ)- [

LEMMA 3.9. If M = ]\7{1 x My X ... X Mk, where for each i, M; is neg-
atively curved with dim M; > 3, then each totally geodesic hypersurface
S of M has negative definite Ricci tensor.

Proof. Let X be a unit vector tangent to S at a point p,and let Y be
another unit vector normal to S at this point. We have X = X; + X, +
e+ Xi, Y =Y + Y2+ ... + Yy, where for each i, X;,Y; are tangent to M;.
Without lose of generality, let X; # 0. Since dim M; > 3, there is a unit
vector Z; which is tangent to M, and normal to X;,Y;. Now consider
a frame {Ey, E!, By, ..., E,_1} for T,M where Ey = X, E{ =Y, E, = 7,
since E|(=Y) is normal to S we get that {Ey, Es, ..., E,_1} is a frame for
T,S, and we have the following relations.

(1) Rics(X, X) = Y Ks(X, E;), see [12] page 88.
i>2

(2) Ks(X, E;)) = Kj(X, E;), since S is totally geodesic in M.

() KulX,E) <O

(4) Ky(X, Ea) = Ky (X4, Zl) this is a consequence of the lemma 3.8.
(5) Ky, (X1, 21) <0, since M, is negatively curved.

By using this relations we get that Ricg(X,X) < 0, so S has negative
definite Ricci tensor. O

THEOREM 3.10. If M is a nonsimply connected UN D cohomogeneity
one Riemannian manifold and M = M; x My X ... X My, where for each
i, dimM; > 3, then
(a) There is at most one singular orbit.

(b) If there is a singular orbit B, it is nonexceptional and diffeomorphic
to RK1 x T™ and m(M) = Z™.

Proof. (a): We prove the theorem in two steps.
Step 1: M does not have two exceptional singular orbits.
Proof: If M has two exceptional singualr orbits, then the dimension of
each orbit of M (and so the dimension of each orbit of M)isn—1,so by

M
2.3 (c), (), M does not have any singualr orbit and v R. Therefore
each normal geodesic v in M intersects an orbit D exactly once. But
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M
since rel [0,1], the normal geodesic moy intersects a principal orbit

D in M infinitely many times, so 7~!(D) has more than one connected
component. Therefore if D is a component of 7= (D), there exist a
nontrivial ¢ € A such that ¢(D) # D thus by lemmas 3.2, 3.3, for a
normal geodesic ~, d?po”y is strictly convex with a minimum point ¢, € R,
and since d?o is constant along orbits, B = é"y(tg) is the minimum point
set of d2. So it is totally geodesic by 2.4 (a). Now since each factor
of the decomposition of M is negatively curved with dim M; > 3, we
get by 3.9 that every totally geodesic hypersurface of M has negative
definite Ricci tensor, so B (hence B = n(B)) has negative definite Ricci
tensor, thus by 2.6, B is simply connected. Since dim B = n — 1, we
get by 2.3 (d) that B is not a singular orbit. As B is simply connected,

B = E(K = G, ¢ € B), where K is maximal compact subgroup of G
(See {10] vol II page 112), which is in contrast with the fact that there
exists singular orbit.

Step 2: M does not have two singular orbits, at least one orbit nonez-
ceptional.

Proof: Let B, be a nonexceptional singular orbit of M then B = n~1(B;)
is the unique singular orbirt of M. Because of dimensional reasons for
each ¢ € A we have p(B) = B. The isometry ¢ induces an isome-
try ¢* on the orbit space R* of M such that for each orbit D we have
¢ (k(D) = k(p(D)). Since p(B) = B, we get that ¢*(0) = ¢ (k(B)) =
kp(B) = k(B) = 0, so for each t € R* we have ¢*(t) = t. Thus
(D) = D. Now we have a contradiction because a normal geodesic ~y

M
in M intersects each principal orbit in two points (—= = R*) while moy

C)

intersects a principal orbit infinitely many times (
exists ¢ € A such that (D) # D.

= [0, 1)). So there

QIE

(b): We need only to show that B can not be an exceptional orbit, the
other parts of the claim is a simple consequence of theorem 3.5. To prove
the claim observe that if it were the case, M would admit only principal
orbits and a normal geodesic intersects each orbit in M exactly in one
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point while since — = R*, a normal geodesic in M intersects each prin-

cipal orbit in two points, and a contradiction arises as in the step 1 of
the proof of (a). i

4. Cohomogeneity one flat manifolds

In this section we study cohomogeneity one flat Riemannian manifolds
which are not toruslike.

It is known that every isometry ¢ € Iso(R") is of the form ¢ =
(A,b), A € O(n),b € R™, that is, p(z) = Az + b, x € R". We say that ¢
is an ordinary translation when A = I (I is the identity map on R™).

Note that R" is the universal Riemannian covering manifold of each
flat manifold M of dimension n.

DEFINITION 4.1. We say that a flat Riemannian manifold M is “torus-
like” if each deck transformation of the universal covering manifold of M
is an ordinary translation.

In the following V.W denotes the inner product of the vectors V' and
W in R" and |V/| is the length of V.

LEMMA 4.2. Let R™ be of cohomogeneity one under the action of a
closed Lie subgroup G C Iso(R") and let ¢ = (A,b) € G,A # I. Then
there is a normal geodesic v on R" such that the function F(t) = di o(t)
is a strictly convex function with the minimum point t3 € R.

Proof. If for each normal geodesic v, ¢ acts as ordinary translation on
the image of v then by the fact that each point of B” belongs to a normal
geodesic, we get that ¢ acts as an ordinary translation on R", which
is in contrast with the fact that A # I. So there is a normal geodesic
v(t) = at+c (a,c € R™) such that the action of ¢ on the image of v is not
an ordinary translation. Let F(t) = dioy(t) = |(A,b)(at +c) — (at +c)|.
It is easy to see that

F'(t) =2(A - Ia.[(A - I)(at +c) + Y]
and
F"(t) =|2(A~ Iaf’

we have (A — I)a # 0 (because it not then Aa = a and (A,b) acts as
ordinary translation on ), so we have F”(t) > 0. Therefore F' is a strictly
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convex function. Now let ¢, be such that F'(¢y) = 0 (since (A — I)a # 0
such a ¢, exists), so ¢y is the minimum point of F. a

LEMMA 4.3. If R” is of cohomogeneity one under the action of a closed
Lie subgroup G of Iso(R") and if all the orbits are regular and one orbit
is isometric to R"1, then other orbits are isometric to R*!.

Proof. Let D; be an orbit which is isometric to R"! and D, be
another orbit, also let L = +(t) be a normal geodesic (so L is a line
orthogonal to the orbits). As the group G acts transitively on normal
geodesics, for each z € D, there exists a g € G such that gL is another
line orthogonal to the orbits, and intersects D, at z. Since L and gL
are orthogonal to D, they are parallel. Also D, is a hypersurface in R"
where at each point £ € D, there exists a line gL normal to D; at x and
parallel to L. Thus D, is a hyperplane (~ R""!). a

THEOREM 4.4. If M is a flat cohomogeneity one Riemannian mani-
fold under the action of a closed Lie group G C Iso(M) and M is not
toruslike, then
(a) Either each orbit D of M is isometric to R* x T™ for some m, k, m +
k =n — 1, or there is a singular orbit B in M.

(b) If there is a unique singular orbit B which is nonexceptional, then B
is isometric to R* x T™ for some m,k and m (M) = Z™.

Proof. Let M = R" be the universal covering manifold of M and let
G be the corresponding covering Lie group of G, which acts on M = R"
by cohomogeneity one.
(a): Since M is not toruslike there is a deck transformation ¢ such that
¢ = (A,b),A # I. By lemma 4.2 there is a normal geodesic y in M
such that the function F'(t) = dZ%(t) is a strictly convex function with a
minimum point ¢p. Since dé is constant along orbits we get that the orbit
Dy = G(to) is the minimum point set of d? Thus by 2.4(a) it is totally
geodesic in M = R™, so it is flat and therefore isometric to R for some 7.
Now let there is not any singular orbit in M. So M = R" does not have
any singular orbit, therefore 7 = n— 1 and Dy is isometric to R*"!, so by
lemma 4.3 we get that each orbit D of M is isometric to R*!, therefore
each orbit D(= m(D)) of M is flat, and since it is homogeneous we get by
theorem 2.5 that D is isometric to R* x T™, for some m, k,m+k =n—1.
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This proves the part (a).

(b): Let B be the unique nonexceptional singular orbit of M and B =
n~1(B) and let F(t) be the function obtained in the proof of part (a)
with the minimum point ty. For each t € R we have Gy(t) = g~1(F(t)),
where g = d2. If ¢ and b are regular values of g then g'(c) and g~'(b)
are diffeomorphic (see [3] page 10 corollary 3.11), from these facts we get
that B = g~'(F(t;)) (because if not, then B = g~1(b) where b is a regular

value of g, and so B must be diffeomorphic to principal orbits which is
a contradiction). So B is the minimum point set of g and therefore by
2.4(a) it is totally geodesic in M and is flat, thus B is flat. Since it is
homogeneous we get by 2.5 that B is diffeomorphic to R* x T™ and by
2.3(b) we have m(M) = m(B) = Z™. a
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