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STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
FOR CATALYTIC SUPER-BROWNIAN MOTIONS

YOUNGMEE KwON* AND HYE-JEONG KANG

ABSTRACT. We study a class of catalytic super Brownian motion
X in 1-dimension. We show under some conditions of catalyst, the
process X is absolutely continuous and we get a stochastic partial
differential equation for X.

1. Introduction

Super Brownian motion(SBM) on R? is a measure-valued process
which can be obtained as a limit of branching Brownian particle sys-
tem on R?. We refer to [2] for such an approximation in a more general
setting. In the last 25 years, spatial branching process have been exten-
sively investigated, i.e., the case of the additive functional of Brownian
motion corresponding to the branching rate p(dy) = dy, the Lebesgue
measure. But when p may vary in time and space, SBM is called a
catalytic super Brownian motion(CSBM). For example in 1-dimensional
case, p(t,dz) = ) _,ai0,iyz), where §, denotes the Dirac- function at
z € R, corresponds to the case where branching is allowed only at the
position of these moving catalysists with unbounded rates. Dawson and
Fleschmann[4] studied CSBM with a single point catalyst in detail. On
the other hand, if D C R® and p(t,dz) = xp(z)dz, p corresponds to
the additive functional A; = fot xp(Bs)ds, where B, is a Brownian mo-
tion. In this case branching occurs only when particles are in D. In
this paper we consider p(¢,dz) = p(dz) for some o-finite measure p on
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R satisfying Condition [A] given below. It was introduced by Delmas[3].
Let Mp(R?) denote the set of finite measure on R%. Delmas showed that
under Condition [A], CSBM exists on C([0,00), Mr(R%)) and is unique
in law by its unique representation of Laplace functional(Theorem 2.1).
In this paper we show that in 1-dimension, CSBM under the condition
[A] is absolutely continuous with respect to Lebesgue measure and give
its stochastic differential equation for the density of CSBM in Theorem
2.2. Finally we get a limit theorem when branching rate p(dy) varies
using martingale measure theory.

2. The Main Result

Let C([0, 00), Mp(R)) be the space of Mp(R)-valued continuous paths
{we;t > 0} with the coordinate process denoted by X,(w) = w;. Let
By(R), Cy(R) be the space of bounded, bounded and continuous func-
tions on R respectively with the supremum norm || - ||. For f € By(R),
and p € Mp(R), let u(f) = (u, f) = [ fdu. Note B = (Q, F, F, By, 6,
(P:)zer), the canonical realization of Brownian motion on Q, P, the semi-
group of Brownian motion and p, the density, i.e., for (s, z) € (0,00) x R

2

1
p(s,z) = mexp( 2s).

CONDITION [A] : Hypothesis of integrability
We say p is a o-finite measure on R in H and denote p € H if there
exists § € (0,1) such that

p(dy)
1 sup / —— < 00.
( ) zeR JB(z;1) |IL’ - y|2ﬁ-1

Delmas showed the following lemmas.

LEMMA 2.1 OF [3]. Let p € H in Condition [A]. Then for all (s,z) €
[0,00) x R

e [ sz = vetan) < e
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for some constant ¢ > 0 independent of s and there exists an additive
functional A; of B, such that for f € By(R* x R!)

® & " (s, B)dA, = Ji “ds [ lnipts,z — ) fu),

(4) a; =sup E; A, < C(t v tP).

z€R

LEMMA 2.2 (Théorém II 3.2 of [3]). Let u € Mp(R) and p € H. Then
the CSBM {X;} exists on C([O, oo),Mp(R)), P,f(, the law of {X,} is
unique where Xo = pi, PX-a.s. and for ¢ € Cy(R), ¢ > 0 and a:||¢|| < 1

E;_‘Xe_<xt'¢) -— e—(l‘rw(t")),

where w(t, z) is the unique solution of the integral equation

®) w(t,2) = Po@) - 3. [ w(t - 5, B dA
Lemma 2.3. ((22), (23) of [3]) If 4 € Mp(R) and ¢ € B(R)

(6) E,((X:,¢)) = E.(6(B))

M B9 = (BAB) 4 B, [ (R-o(B) A

THEOREM 2.1. Let p € H and p € Mp(R). Then

(i) Pu(X:(dzx) is absolutely continuous with respect to dz for a.e. t >
0)=1 "

(i) if X;(x) be the density of X, then for every ¢ € CX(R),

(X, 8) — (Xo, ) / [ VE@)o(a)W (dads) /t<Xs,¢">ds

where W(z,t) is a space time white noise with covariance measure
( W(dzdt) ) = p(dz)dt.

Proof of (i). By (6) and (7),

EX(X:,¢) = (i, P:§)
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®)  EX(Xoo) t
— (P + (b / (Pr-s(B,))2dA,)

= (4, P+ (u, / ds / (dy)p(s, = = y)(Pisb(¥))?)

— (PO + [ ds(uP?, (Prs$)?),
where we denote
PPo(z) = / p(5, % — ¥)6(v)p(dy).

Let p*(y) = p(t,y — z) and X}(z) = ( Xi, pf ). We first show that for
any T > 0,

T
9) / / EX (XMa))thdrdt < oo
0 R
and
T /
(10) 1’%1%} /0 /R EX(X}Mz) - XF (2))*t1dzdt = 0.

Noting that P,pf(y) = pf,,(y), we get from (8)
¢
BECCH@P) = G tl? + [ ds(uPLo (PRY)

Since t4(u, p%,4) < (1),
T iy T
[ Justardasa < uw [ fortaden
= u(1)T < co.
< C . .
The fact that py.n(y) < vy implies
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/ ' [ ds(uP2, (o)) tHdadt
c / /. / ds(ua_,,p,+h( h)%dxdt
- c/ f/ds//p<t—sy—z)p(s+h y — o)p(dy)(dz)

dzdt.

IA

(s+h)§

By integrating with respect to z first and then applying Lemma 2.1,
the right hand side equals

C /0 ' /0 t ds / / p(t — s,y — z)p(dy)u(dz) 7 fh),}dt

T t 1 t%
<cwf [ @A) mid

T e !
< C(T,p) /0 /0 e+ D)

C(T, u) / ' / t(f)-%tf’-lu - f)ﬂ-ldsdt+0'(T)

I

— O, u / tﬂ / y)P-\dydt + C'(T) < oo,
since 0 < 8 < 1 and we get (9). Also

E} (X} (z) - X' (2))?
= Eu((Xu 55 —93)%)

t
B — B + / ds(uP? ) (5% un = D2on)?)-

Then by the same argument to show (9), we have (10). Therefore there
exists a jointly measurable function X;(z,w) : [0,00) x R x 2 — [0, c0)
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satisfying

T 1

/ / Ef(Xy(z)*)t?dtdz < 0o for any T > 0
o Jr
and
T 1

(11) lim / / EX(X}z) — X,(2))tdtds = 0.

kO Jo Jr

Moreover, for every ¢ € C®(R)
B\ 6) - [ Xi(o)ple)dal
= hmEX| (X}, ¢) /Xt(:c )o(x)dz|?

< tim /R EX(XMz) - Xi(z))%do /R #(z)dz
— 0. v

Therefore we prove (i).
proof of (ii). For ¢ € By([0,00) x R), there exists I',(ds, dy) such that

/ot ds/P(dy)/Xs(dz)p(e,z—y)¢(s,y) — /Ot L,(ds,dy)é(s,y) a.s. Pf

as € — 0 by Proposition 5.1 of [3] and for a.e. s and a.e. y,
X:(y) = /Xs(dz)p(s,y - 2) = X,(y) as. P,f

by (i). Therefore for all ¢ € By([0,00) x R) if p(dy) = f(y)dy for some
f € By(R),

T, (ds, dy)d(5,3) = | [ xwetevptasas.
For all ¢ € C?(R), define
(M) = (X ) = (X, 8) — [ (X 36"
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then by Proposition 9.1 of [3] and (12), if p(dy) = f(y)dy, (M¢), is a
continuous martingale with

(13) (M), = / Iy (ds, dy) ()

= [ [ e

Take W, a white noise independent of X;(dz) with (W (dzds)) = p(dz)ds.
Set

(14) Wi(8) = /0 /R ﬁl(x,(z)ﬂ))(ﬁ(x)M (dzds)

t
+A /RI(X‘(z)zo)¢(.’lI)W(d.’1:d8).

Then Wy(¢) is a continuous martingale such that

(W(g)): = /0 / Iix,(2)20)0° (x)o(dx)ds + /0 / I(x,2)=0)¢" (z)p(dz)ds

t
2
/0 [ #@ptazyas.
Therefore

o) = (Ko d) + [ (X 30ds+ [ [ VX)W (dads),

where W (dzds) is a continuous martingale measure such that { W(dzds))
= p(dz)ds, i.e., a white noise. O

By Proposition 9.1 of [3], X} is a solution of martingale problem (MP):
For all ¥ € C;*([0,00) x R),

() = (X bl (Ko O) = [ 06 T2+ 355 6)ds

is a martingale such that

(My), = /0 t / X,(z)y*(s, z)p(dz)ds.

Now we show that the above martingale problem has a unique solution
if p(dy) = f(y)dy for some f € Cy(R).
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THEOREM 2.2. Let p € H and p(dy) = f(y)dy for some f € Cy(R).
Then the solution of (MP) is unique.

To prove this theorem, we need the following result.

LEMMA 2.4. Under the same conditions as Theorem 2.2, w(t z) de-
fined by (5) satisfies the following differential equation

(14) gt (t,z) — 82 w(t z) — ;'w(t, z)f(z) =0.
Proof. Let A = 66_;2 First we show that fot P, (w?(t—s)f)(z)ds € D(A).
Put

M= sup |w?(s,y)f()

0<s<t,yeR
Then by (4) of [3] we have
1 1
(18) [Pt - 8)f)(@ +h) - P(w*(t - )f)(z)] < M.
Vs
We claim that for each z, the left hand side of (15) has a finite limit.
The left hand side of (15) can be decomposed as follows.

%[ps(wm — 8)f)(@ + k) = Py(w?(t - 5)f)(z)]
_ /wz(t—sy )\/27 h[ %:ZL—G S_;z)_]

= \/él_. w(t—s,m—u)f(x—u)-%[e‘ﬂgﬁ—e‘%]du
TS

1 * _% 1 u+h)? 2

+ du w?(t — s,z —u)f(x —u) - — - e E).
\/27rs/_g /_oo ( ) ( ) h[ ]
Since 1 —e™* < z for x > 0, if u > -2,

(e 2 u2 u2 175 2 2h h2 u2
|e"£_27h)_ — e_ﬁl = e_ﬁ(l — e—hgh_) S _——uz:: . e—'ﬂ’

and if u < —%,

2 weh)?
|€_$LZ‘)Z — e_%l = e—%ﬁ(l — e2hu§ah2) < __._——2hu2+ h .e” 2: R
S
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Hence
1 u+h 2
Wit — s,z —w)f(z ) e F —eF)
MZuthe-% if u>—b
S 2 2:;: e _ h
wth - .

——M—.;;e s if u< -3

2
%e"b if u>0

- 2
—te~k  if u<0

[

as h—0.

Furthermore, we have

00 2 00 2
lim / (2u+ h)e %du = j 2ue” % du
h—0 _.g 0

_g . 0
gn(l) / —(2u+ h)e"'%ﬁdu = / —2ue % du
| —00 —00

and so we arrive at

lim % (P,(u(t ~ 9)f)(z + ) = Pu(w(t ~ 9)/)(@)]

= /wz(t — s, y)f(y)—\/% 2z ye'ﬂgﬁdy-

8

Combining the last equality with (15), we conclude that 5"; fot P, (w(t-
s) f)(x) ds exists and is equal to

/0 / w(t —s,9)f (y)J—zl—W-—s IV dyds.

8

In a similar way but with longer calculation, we can show that .52:7 j: P,
(w?(t—s) f )(x) ds exists, in other words, s Py(w?(t—s)f)(z)ds € D(A).
Now,

t+h t
(16) %[ /o B,(wi(t + h — 8)f)(z)ds — /0 P(w(t - 5)f)(z) ds]

1 t+h

+ [ P+ s)(e)ds - /0 P,(w?(t — 5)f)(c) ds]

h
+-’1;f0 P,(w?(t + h — 8)f)(z)ds
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Phh I /0 Py(w*(t — 5)f)(z)ds + %/0 P,(w(t +h~s)f)(z)ds

On the other hand,

h
—1—/0 P(w*(t + h — s)f)(x)ds

R
h h
=%/O Ps(w2(t+h—s)f—w2(t—s)f)(x)ds+%/0 P 5)f)(@)ds.

Since w(s, y) is uniformly continuous on [§, 7] x R for any T > 0 any
4 > 0 and f is bounded, we can make the first term arbitrary small. Also
the continuity and boundedness of w?(t — s,y)f(y) implies that

h

(17) lim = / Py(w?(t + h — 8)f)(z)ds = w(t, o) f(z).

R0 h Jo
We obtain (11) from (12) and (17). O
Proof of Theorem 2.2. It is enough to show that EX (exp(—(X, ¢)))
is uniquely determined for all ¢ € CZ(R). Since p(dy) = f(y)dy, we have
1 t
wit,z) = Pole) =5 [ [ wie=s.u)pls2 - ) f()das.

For T > 0, put ¥(t,z) = w(T —t,z). Then by Lemma 2.4 9(t, z) satisfies
the following partial differential equation

0 8
SH(69) + () + 39, 2)f(z) = 0

By Ito’s formula
e_(Xtﬂ/)(t:’)) — e—(Xoﬂ/J(O-'))

t 0 &
~ /e_<x,,¢<s,~)> [(X,, 5oV() + 55%(s, )

+ 5 [ X optan)ds

is a martingale. Therefore if p(dz) = f(z)dz, by (14) and letting T = ¢,
E;Ye_<xtn¢) — E;}'e_(l‘lw(tv')) e e_(”vw(tv'))

and the theorem is proved. O
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We denote that p,(dy) — p(dy) as n — oo if for ¢ € C®(R),
S o@)en(dy) — [ ¢(y) p(dy).

THEOREM 2.3. Let X™ and X be the CSBM with respect to p, and p
respectively and py, p are in H in Condition [A] with a uniform bound and

a common 3. If pn(dy) = fu(y)dy, p(dy) = f(y)dy for some fy, f € Cy(R)
and p,(dy) — p(dy), there exists an Mp(R)-valued process Y such that
X7 (z) converges to Yy(z) in L? for almost all t € [0,00) and z € R, and
Y =X if f € Cy(R).

Proof. By Theorem 2.1, for ¢ € C®(R),
4 t

0, 8) = (65,00 + [ 00, ¢ds + [ / VX @)b(x)Wa(duds),
0 0

where W, is a white noise with (W,(dzds)) = p,(dx)ds. Denote (X7, ¢)
by X7'(¢). Then first we show that {X}(#)} is tight, i.e.,

(i) for any T > 0, supgc,cr Ef "[X7(9)% < oo,
(i) for0<t<T,0<u<$é

B (X1u(9) - XP(9))*1F7) =0, as 6—0
where F7' is a o-field generated by X".
By Corollaire 4.5 of [3],

(18) sup EX[X](#))F < oo,
n,0<t<T
for given p > 1, therefore (i) holds. Now for (ii)

X (9) — X7 (o) =/tt+u(Xf, ¢”)ds+[+u/\/X;'(x)¢(x)W"(dwds)

=I+1I
From the Lemma 5.2 of 3], we have the followings.

@) = BR[f " Xr(¢" ds]? < 16" IPu(Lu
EX(IP) = EX| /t ™ / X7 (x)¢*(z)pn(dz) ds]

= EX| /t ™ ['2(ds, dz)$*(z))
< Ml|lP.
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Therefore we get a limit and let Y;(¢) be a limit of X}(¢). By (18),
{X?(#)} is uniformly integrable and this implies

EFIXT(9) — Ef (Yi(9))? as n— oo,
and (9) and (10) hold with ¥;. These are all we need to have the density
of Y}, Yi(x) satisfying

T
lim / / E,(Y}z) - Yi(z))*dadt = 0,
wo Jo Jr

where Y*(z) = (Y,,pf). Let X} (z) = (X7, pf). By Skorohod represen-
tation, we can write the following in some appropriate space,
T
| [ Bxe@ - vitw)ihanas
o Jr
T
< const. / / Eu(XP(z) — XD (2))t dods
o Jr

T
+ / / Eu (X! (z) ~ YM(x))*thdzdt
0 R

T
+ /0 /R E,,(Yt"(x)—Yt(x))2t%dzdt]
= (I)+{II) + (IID).

Since for fixed h > 0, (II) — 0 as n — oo, for fixed n, (I) — 0 as
h — 0 and (I),(II),(I1I) are uniformly bounded for all n and 0 <
h < 1. Therefore X'(z) = Y;(z) in L? for almost all t. Moreover, for
each ¢ € CX(R), W*(¢) and W,(¢) are continuous martingales with
covariance p,(¢)t and p(#)t respectively. Therefore W*(¢) = B, 4); a.s.
for 0 <t < co and this implies that W*(¢) has a unique limit, W;(¢).
That is, Wy(dzds) = W(dzds) in Cg/(ge)[0, 00), where S'(R?) is the dual
of Schwartz space. Also

t
1
w ), [

11
1
< sup/ sup/ —————— 0, (dy)ds < oo.
n Jo = JB(z1) |z — y[- 14287 )
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Therefore by Theorem 2.2 in [1], we get
i t
| [ xe@oamwidsds) = [ [ viwipowdsds
o Jr o Jr

and

@)= uo) + [ Vst [ [ VTG (o).

If p(dr) = f(z)dz for some f € Cy(R), then by the uniqueness of the
solutions of martingale problem(Theorem 2.2), Y = X, i.e., the CSBM
with cespect to p. 0
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