NORMALIZING MAPPINGS OF AN ANALYTIC GENERIC CR MANIFOLD WITH ZERO LEVI FORM

Won K. Park

Abstract. It is well-known that an analytic generic CR submanifold M of codimension m in \mathbb{C}^{n+m} is locally transformed by a biholomorphic mapping to a plane $\mathbb{C}^n \times \mathbb{R}^m \subset \mathbb{C}^n \times \mathbb{C}^m$ whenever the Levi form L on M vanishes identically. We obtain such a normalizing biholomorphic mapping of M in terms of the defining function of M. Then it is verified without Frobenius theorem that M is locally foliated into complex manifolds of dimension n.

0. Introduction

Let ρ_1, \cdots, ρ_m be real-valued functions near the origin in \mathbb{C}^{n+m} such that

$$\rho_1|_0 = \cdots = \rho_m|_0 = 0$$

and

$$\partial \rho_1 \wedge \cdots \wedge \partial \rho_m|_0 \neq 0.$$

Suppose that a generic CR submanifold M of codimension m in a sufficiently small domain $\Omega \ni 0$ is defined by the real-valued functions ρ_1, \cdots, ρ_m as follows

$$\rho_1 = \cdots = \rho_m = 0.$$

Then there is a natural differential system D on M defined by

$$d\rho_1 = \cdots = d\rho_m = d^c \rho_1 = \cdots = d^c \rho_m = 0$$

where d^c is the imaginary part of ∂. The differential system D is indeed a subbundle of real dimension $2n$ in TM. Further, the complex structure of \mathbb{C}^{n+m} induces a bundle automorphism I on D satisfying the following conditions

2000 Mathematics Subject Classification: Primary 32H99.
Key words and phrases: CR submanifold, Levi form, biholomorphic mapping.
(1) \[I^2 U = -U \]

(2) \[[U, V] - [IU, IV], \quad [IU, V] + [U, IV] \in \Gamma D \]

(3) \[[U, V] - [IU, IV] + I([IU, V] + [U, IV]) = 0 \]

for all \(U, V \in \Gamma D \). By (1), we have the following decomposition
\[D \otimes \mathbb{C} = H \oplus \overline{H}, \]

where
\[IW = iW \quad \text{for} \quad W \in \Gamma H. \]

Then (2) and (3) are equivalent to
\[[W, Z] \in \Gamma H \quad \text{for} \quad W, Z \in \Gamma H. \]

Then the Levi form \(L \) of the generic CR submanifold \(M \) is defined by the intrinsic objects \((M, D, I) \) as the composition of the following sequence
\[D \otimes D \xrightarrow{b_1} TM \xrightarrow{b_2} TM/D, \]

where \(b_1 \) is the Lie bracket with the operation \(I \) as follows
\[b_1(U, V) = [U, IV] \]

and \(b_2 \) is the natural projection. Clearly, the Levi form \(L \) is also an intrinsic object of \(M \). With (1) and (2), we obtain the following properties of the Levi form \(L \)
\[
\begin{align*}
L(fU, V) &= L(U, fV) = fL(U, V) \\
L(U, V) &= L(V, U) \\
L(IU, IV) &= L(U, V)
\end{align*}
\]

for \(f \in \Gamma(M, \mathbb{R}) \) and \(U, V \in \Gamma D \). Hence we obtain
\[L(W, Z) = L(\overline{W}, \overline{Z}) = 0 \]

for \(W, Z \in \Gamma H. \) Thus the Levi form \(L \) is completely determined by the value \(L(W, Z) \).

Note that the operation \(I \) is an automorphism on \(D \). Thus the Levi form \(L \) is faithfully represented by a two-form \(l \) obtained by composing the following sequence
\[A^2 D \xrightarrow{b_1} TM \xrightarrow{b_2} TM/D \rightarrow TM/D \otimes (TM/D)^* \rightarrow M \times \mathbb{R}, \]
where b^*_1 is the Lie bracket. Since the generic CR submanifold M is defined by the real-valued functions ρ_1, \ldots, ρ_m satisfying the condition $\partial \rho_1 \wedge \cdots \wedge \partial \rho_m \neq 0$, the one-forms $d^c \rho_1, \ldots, d^c \rho_m$ make a basis of $(TM/D)^*$. Then we define a two-form $l = (l_1, \ldots, l_m)$ as follows
\[
\begin{align*}
l_1(U, V) &= -d^c \rho_1([U, V]) = 2dd^c \rho_1(U, V) = 2i\partial \bar{\partial} \rho_1(U, V) \\
&\quad \vdots \\
l_m(U, V) &= -d^c \rho_m([U, V]) = 2dd^c \rho_m(U, V) = 2i\partial \bar{\partial} \rho_m(U, V)
\end{align*}
\]
for $U, V \in \Gamma D$. Note that the differential system D on M is defined by the one-forms
\[d\rho_1, \ldots, d\rho_m, d^c \rho_1, \ldots, d^c \rho_m.\]
Thus the Levi form L is essentially equivalent to the information of the two-form
\[l = 2dd^c \rho = 2i\partial \bar{\partial} \rho\]
up to
\[\text{mod } d\rho_1, \ldots, d\rho_m, d^c \rho_1, \ldots, d^c \rho_m.\]

Then the zero Levi form is represented by the following condition
\[l \equiv 0 \mod d\rho_1, \ldots, d\rho_m, d^c \rho_1, \ldots, d^c \rho_m.\]
Since we have
\[\phi^* \circ \partial = \partial \circ \phi^*, \quad \phi^* \circ \bar{\partial} = \bar{\partial} \circ \phi^*\]
for any biholomorphic mapping ϕ, the zero Levi form leaves invariant under a biholomorphic mapping ϕ as follows
\[
\begin{align*}
2i\partial \bar{\partial} \phi^* \rho &= 2i\phi^* \partial \bar{\partial} \rho \\
&\equiv 0 \mod d\phi^* \rho_1, \ldots, d\phi^* \rho_m, d^c \phi^* \rho_1, \ldots, d^c \phi^* \rho_m.
\end{align*}
\]
It is well-known that a generic CR submanifold M with zero Levi form is locally foliated into complex manifolds (cf. [1]). Further, an analytic generic CR submanifold M with zero Levi form is locally biholomorphic to a plane $\mathbb{C}^n \times \mathbb{R}^m \subset \mathbb{C}^n \times \mathbb{C}^m$. We shall obtain a biholomorphic mapping in terms of the defining functions ρ_1, \ldots, ρ_m which transforms M to a plane $\mathbb{C}^n \times \mathbb{R}^m$. Thus it is verified that M is locally analytically foliated into complex manifolds of complex dimension n, which has been obtained within our knowledge under the assumption of Frobenius theorem for the existence of a foliation and Newlander-Nirenberg theorem/Levi-Civita theorem for its leaf to be a complex manifold (cf. [1]).
1. Straightening a totally real surface \(\Gamma \)

Let \(M \) be an analytic generic CR submanifold in \(\Omega \subset \mathbb{C}^{n+m} \) near the origin defined by

\[
\rho_1 = \cdots = \rho_m = 0,
\]

where

\[
\partial \rho_1 \wedge \cdots \wedge \partial \rho_m \neq 0.
\]

Then we may take a coordinate \((z, w) \in \mathbb{C}^n \times \mathbb{C}^m\), if necessary, after a suitable linear change of coordinates such that

\[
\rho = -v + F(z, \bar{z}, u), \quad F|_0 = dF|_0 = 0,
\]

where \(\rho = (\rho_1, \cdots, \rho_m)\), \(u = \Re w\) and \(v = \Im w\). Thus \(M \) is defined near the origin by the following equation

\[
v = F(z, \bar{z}, u), \quad F|_0 = dF|_0 = 0.
\]

Let \(\Gamma \) be an analytic real surface of dimension \(m \) on \(M \), which is transversal to the complex tangent hyperplane at the origin 0. Then the equation of \(\Gamma \) is given near the origin as follows

\[
\Gamma \left\{ \begin{array}{l}
z = p(\mu) \\
u = q(\mu)
\end{array} \right.,
\]

where

\[
p(0) = q(0) = 0, \quad \det q'(0) \neq 0.
\]

By the condition \(F|_0 = dF|_0 = 0 \), we can take the \(\mathbb{R}^m \)-valued parameter \(\mu \) such that

\[
q'(0) = Id_{m \times m}, \quad \Re q(\mu) = \mu,
\]

where \(Id_{m \times m} \) is the identity matrix and \(\Re q(\mu) \) is the real part of \(q(\mu) \). Hence the real surface \(\Gamma \) on \(M \) determines a unique function \(p(\mu) \) and \(\Gamma \) is uniquely described by the function \(p(\mu) \) via the following equation

\[
\Gamma \left\{ \begin{array}{l}
z = p(\mu) \\
u = \mu \\
v = F(p(\mu), \bar{p}(\mu), \mu).
\end{array} \right.
\]

Assume that the generic CR submanifold \(M \) and the surface \(\Gamma \) on \(M \) are both analytic so that the functions \(F(z, \bar{z}, u) \) and \(p(\mu) \) are both analytic. Then there is a unique holomorphic function \(g(z, w) \), which is implicitly defined by the equations
(5) \[g(z, w) - g(0, w) = -2iF(p(w), \bar{p}(w), w) + 2iF\left(z + p(w), \bar{p}(w), w + \frac{1}{2}\left\{g(z, w) - g(0, w)\right\}\right), \]
\[g(0, w) = iF(p(w), \bar{p}(w), w). \]

The holomorphic function \(g(z, w) \) is well defined because of the condition
\[F|_0 = dF|_0 = 0, \]
which implies
\[g|_0 = \frac{\partial g}{\partial z}|_0 = \frac{\partial g}{\partial w}|_0 = 0. \]

Then we consider a holomorphic mapping near the origin as follows
\[z = z^* + p(w^*), \]
\[w = w^* + g(z^*, w^*). \]

By (6), the mapping (7) is biholomorphic near the origin for any analytic function \(p(w) \). We claim that the generic CR submanifold \(M \) is transformed to a generic CR submanifold \(M' \) of the form
\[v = \sum_{s,t=1}^{\infty} F^*_{st}(z, \bar{z}, u) \]
and the surface \(\Gamma \) on \(M \) via the equation (4) is mapped on the \(u \)-plane, \(z = v = 0 \), under the biholomorphic mapping (7).

Suppose that the generic CR submanifold \(M' \) is defined by
\[v^* = F^*(z^*, \bar{z}^*, u^*). \]
The mapping (7) yields the following equality
\[F(z, \bar{z}, u) = F^*(z^*, \bar{z}^*, u^*) + \frac{1}{2i}\left\{g(z^*, u^* + iv^*) - \bar{g}(\bar{z}^*, u^* - iv^*)\right\}, \]
where
\[z = z^* + p(u^* + iv^*), \]
\[\bar{z} = \bar{z}^* + \bar{p}(u^* - iv^*), \]
\[u = u^* + \frac{1}{2}\left\{g(z^*, u^* + iv^*) + \bar{g}(\bar{z}^*, u^* - iv^*)\right\}. \]
Since F and F^* are both real-analytic, we can consider z^*, \bar{z}^* and u^* as independent variables. Hence the condition of $F^*(z^*, 0, u^*) = v^* = 0$ is equivalent to the following equality

\begin{equation}
(8) \quad g(z, u) - \bar{g}(0, u) = 2iF\left(z + p(u), \bar{p}(u), u + \frac{1}{2}\left\{g(z, u) - \bar{g}(0, u)\right\}\right).
\end{equation}

We obtain an equality by taking $z = 0$

\begin{equation}
\nonumber g(0, u) - \bar{g}(0, u) = 2iF\left(p(u), \bar{p}(u), u + \frac{1}{2}\left\{g(0, u) - \bar{g}(0, u)\right\}\right),
\end{equation}

which implies that

\[g(0, u) + \bar{g}(0, u) = 0 \]

if and only if

\[g(0, u) = iF(p(u), \bar{p}(u), u). \]

Hence (8) reduces to

\begin{equation}
\nonumber g(z, u) - g(0, u) = -2iF\left(p(u), \bar{p}(u), u\right)
+ 2iF\left(z + p(u), \bar{p}(u), u + \frac{1}{2}\left\{g(z, u) - g(0, u)\right\}\right).
\end{equation}

Thus the equality (8) is satisfied by the function $g(z, u)$ defined in the mapping (5). By putting

\[z^* = \bar{z}^* = v^* = 0 \]

in (7), we obtain

\begin{align*}
z & = p(u^*), \\
u & = u^*, \\
v & = F(p(u^*), \bar{p}(u^*), u^*).
\end{align*}

Thus the surface Γ on M in (4) is mapped on the u-plane by the biholomorphic mapping (7).
From the equation (5), we obtain the holomorphic function $g(z, w)$ up to order 2 inclusive of the variable z as follows

$$
g(z, w) = iF(p(w), \bar{p}(w), w) + 2i(Id - iF')^{-1} \left\{ \sum_{\alpha=1}^{n} z^\alpha \left(\frac{\partial F}{\partial z^\alpha} \right)(p(w), \bar{p}(w), w) + \sum_{\alpha, \beta=1}^{n} \frac{z^\alpha z^\beta}{2} \left(\frac{\partial^2 F}{\partial z^\alpha \partial z^\beta} \right)(p(w), \bar{p}(w), w) \right\}
$$

$$
-2(Id - iF')^{-1} \left\{ \sum_{\alpha=1}^{n} z^\alpha \left(\frac{\partial F}{\partial z^\alpha} \right)(p(w), \bar{p}(w), w) \right\}
\times (Id - iF')^{-1} \left\{ \sum_{\alpha=1}^{n} z^\alpha \left(\frac{\partial F}{\partial z^\alpha} \right)(p(w), \bar{p}(w), w) \right\}
$$

$$
-2i(Id - iF')^{-1} F''
\times \left((Id - iF')^{-1} \left\{ \sum_{\alpha=1}^{n} z^\alpha \left(\frac{\partial F}{\partial z^\alpha} \right)(p(w), \bar{p}(w), w) \right\} \right)^2 + \sum_{|l|=3} O(z^l),
$$

where

$$
(F')_{ab} = \left(\frac{\partial F^a}{\partial u^b} \right)(p(w), \bar{p}(w), w),
$$

$$
\left(\frac{\partial F'}{\partial z^\alpha} \right)_{ab} = \left(\frac{\partial^2 F^a}{\partial z^\alpha \partial u^b} \right)(p(w), \bar{p}(w), w),
$$

$$
(F'')_{abc} = \frac{1}{2} \left(\frac{\partial^2 F^a}{\partial u^b \partial u^c} \right)(p(w), \bar{p}(w), w).
$$

We shall examine the dependence of the function $F^*_i(z, \bar{z}, u)$ of the lowest type $(1, 1)$ on the function $p(u)$ and its derivatives.

Lemma 1. Let M' be the generic CR submanifold obtained from M by the mapping (7) and defined by

$$
v = F^*(z, \bar{z}, u) = \sum_{s, t=1}^{\infty} F^*_{st}(z, \bar{z}, u).
$$
Then the function \(F'_{11}(z, \bar{z}, u) \) depends on \(p(u) \) and \(p'(u) \) as follows

\[
F'_{11}(z, \bar{z}, u) = \left\{ \begin{array}{c}
\text{Id} - i(\text{Id} + iF') \sum_{\alpha=1}^{n} \left(\frac{\partial F}{\partial z^\alpha} \right) p^\alpha \\
+i(\text{Id} - iF') \sum_{\alpha=1}^{n} \left(\frac{\partial F}{\partial z^\alpha} \right) \bar{p}^\alpha + (F')^2 \end{array} \right\}^{-1}
\times \left\{ \begin{array}{c}
\sum_{\alpha, \beta=1}^{n} \left(\frac{\partial^2 F}{\partial z^\alpha \partial \bar{z}^\beta} \right) z^\alpha \bar{z}^\beta \\
-i \sum_{\alpha, \beta=1}^{n} \left(\frac{\partial F'}{\partial z^\alpha} \right) (\text{Id} + iF')^{-1} z^\alpha \bar{z}^\beta \\
+i \sum_{\alpha, \beta=1}^{n} \left(\frac{\partial F'}{\partial z^\alpha} \right) (\text{Id} - iF')^{-1} \left(\frac{\partial F}{\partial \bar{z}^\beta} \right) z^\alpha \bar{z}^\beta \\
-2 \sum_{\alpha, \beta=1}^{n} F''(\text{Id} - iF')^{-1} \left(\frac{\partial F}{\partial z^\alpha} \right) z^\alpha (\text{Id} + iF')^{-1} \left(\frac{\partial F}{\partial \bar{z}^\beta} \right) \bar{z}^\beta
\end{array} \right\},
\]

where

\[
\left(\frac{\partial F}{\partial z^\alpha} \right)_a = \left(\frac{\partial F^a}{\partial z^\alpha} \right) (p(u), \bar{p}(u), u),
\left(\frac{\partial^2 F}{\partial z^\alpha \partial \bar{z}^\beta} \right)_a = \left(\frac{\partial^2 F^a}{\partial z^\alpha \partial \bar{z}^\beta} \right) (p(u), \bar{p}(u), u),
\left\{ \left(\frac{\partial F}{\partial z^\alpha} \right) p^\alpha \right\}_{ab} = \left(\frac{\partial F^a}{\partial z^\alpha} \right) (p(u), \bar{p}(u), u) \left(\frac{\partial p^a}{\partial u^b} \right) (u),
\left(\frac{\partial F'}{\partial z^\alpha} \right)_{ab} = \left(\frac{\partial^2 F^a}{\partial z^\alpha \partial u^b} \right) (p(u), \bar{p}(u), u),
(F')_{ab} = \left(\frac{\partial F^a}{\partial u^b} \right) (p(u), \bar{p}(u), u),
(F'')_{abc} = \frac{1}{2} \left(\frac{\partial^2 F^a}{\partial u^b \partial u^c} \right) (p(u), \bar{p}(u), u).
\]
Proof. The generic CR submanifold \(M' \) is defined by the following equation

\[
\begin{align*}
v &= F(z + p(u + iv), \bar{z} + \bar{p}(u - iv), \\
&\quad u + \frac{1}{2}\{g(z, u + iv) + \bar{g}(\bar{z}, u - iv)\} \\
&\quad - \frac{1}{2i}\{g(z, u + iv) - \bar{g}(\bar{z}, u - iv)\} \\
&= A(z, \bar{z}, u) + B(z, \bar{z}, u)v + O(|v|^2),
\end{align*}
\]

where

\[
A(z, \bar{z}, u) = F\left(z + p(u), \bar{z} + \bar{p}(u), u + \frac{1}{2}\{g(z, u) + \bar{g}(\bar{z}, u)\}\right) \\
- \frac{1}{2i}\{g(z, u) - \bar{g}(\bar{z}, u)\}
\]

\[
B(z, \bar{z}, u) = i \sum_{\alpha=1}^{n} \left(\frac{\partial F'}{\partial z^\alpha} \right) \left(z + p(u), \bar{z} + \bar{p}(u), u + \frac{1}{2}\{g(z, u) + \bar{g}(\bar{z}, u)\}\right) p^{\alpha'}(u) \\
- i \sum_{\alpha=1}^{n} \left(\frac{\partial F'}{\partial \bar{z}^\alpha} \right) \left(z + p(u), \bar{z} + \bar{p}(u), u + \frac{1}{2}\{g(z, u) + \bar{g}(\bar{z}, u)\}\right) \bar{p}^{\alpha'}(u) \\
- F'\left(z + p(u), \bar{z} + \bar{p}(u), u + \frac{1}{2}\{g(z, u) + \bar{g}(\bar{z}, u)\}\right) \\
\times \frac{1}{2i}\{g'(z, u) - \bar{g}'(\bar{z}, u)\} \\
- \frac{1}{2}\{g'(z, u) + \bar{g}'(\bar{z}, u)\}.
\]

With the function \(g(z, w) \) in (5), we can put

\[
A(z, \bar{z}, u) = \sum_{s, t \geq 1} A_{st}(z, \bar{z}, u),
\]

\[
B(z, \bar{z}, u) = \sum_{s, t \geq 0} B_{st}(z, \bar{z}, u).
\]

By using the expansion (9) of \(g(z, w) \), we obtain

\[
v = \left\{I - B_{00}(z, \bar{z}, u)\right\}^{-1} A_{11}(z, \bar{z}, u) + O(|z|^3),
\]

\[
\left\{ A_{11}(z, \bar{z}, u) \right\}_a = \sum_{\alpha, \beta = 1}^n z^\alpha \bar{z}^\beta \left(\frac{\partial^2 F^a}{\partial z^\alpha \partial \bar{z}^\beta} \right) (p(u), \bar{p}(u), u) \\
+ \sum_{\alpha, \beta = 1}^n \sum_{b = 1}^m \frac{z^\alpha \bar{z}^\beta}{2} \left(\frac{\partial^2 F^a}{\partial z^\alpha \partial u^b} \right) (p(u), \bar{p}(u), u) \left(\frac{\partial g^b}{\partial z^\beta} \right) (0, u) \\
+ \sum_{\alpha, \beta = 1}^n \sum_{b = 1}^m \frac{z^\alpha \bar{z}^\beta}{2} \left(\frac{\partial^2 F^a}{\partial z^\beta \partial u^b} \right) (p(u), \bar{p}(u), u) \left(\frac{\partial g^b}{\partial z^\alpha} \right) (0, u) \\
+ \sum_{\alpha, \beta = 1}^n \sum_{b, c = 1}^m \frac{z^\alpha \bar{z}^\beta}{4} \left(\frac{\partial^2 F^a}{\partial u^b \partial u^c} \right) (p(u), \bar{p}(u), u) \\
\quad \times \left(\frac{\partial g^b}{\partial z^\alpha} \right) (0, u) \left(\frac{\partial \bar{g}^c}{\partial z^\beta} \right) (0, u)
\]

\[
\left\{ B_{00}(z, \bar{z}, u) \right\}_{ab} = i \sum_{\alpha = 1}^n \left(\frac{\partial F^a}{\partial z^\alpha} \right) (p(u), \bar{p}(u), u) \left(\frac{\partial p^\alpha}{\partial u^b} \right) (u) \\
- i \sum_{\alpha = 1}^n \left(\frac{\partial F^a}{\partial z^\alpha} \right) (p(u), \bar{p}(u), u) \left(\frac{\partial \bar{p}^\alpha}{\partial u^b} \right) (u) \\
- \frac{1}{2i} \sum_{c = 1}^m \left(\frac{\partial F^a}{\partial u^c} \right) (p(u), \bar{p}(u), u) \\
\quad \times \left\{ \left(\frac{\partial g^c}{\partial u^b} \right) (0, u) - \left(\frac{\partial \bar{g}^c}{\partial u^b} \right) (0, u) \right\}.
\]

From the expansion (9), we obtain
\[
g(0, u) = iF(p(u), \bar{p}(u), u),
\]
\[
\left(\frac{\partial g^b}{\partial z^\alpha} \right) (0, u) = \left\{ 2i(Id - iF')^{-1} \left(\frac{\partial F}{\partial z^\alpha} \right) (p(u), \bar{p}(u), u) \right\}_b,
\]
\[
\left(\frac{\partial g^b}{\partial u^c} \right) (0, u) = \left\{ i \sum_{\alpha} \left(\frac{\partial F}{\partial z^\alpha} \right) p^\alpha(u) + i \sum_{\alpha} \left(\frac{\partial F}{\partial z^\alpha} \right) \bar{p}^\alpha(u) + iF' \right\}_{bc}.
\]
where
\[
\left\{ \left(\frac{\partial F}{\partial z^a} \right) p^{\alpha'}(u) \right\}_{ab} = \left(\frac{\partial F^a}{\partial z^\alpha} \right) (p(u), \bar{p}(u), u) \left(\frac{\partial p^\alpha}{\partial u^b} \right) (u),
\]
\[
(F')_{ab} = \left(\frac{\partial F^a}{\partial u^b} \right) (p(u), \bar{p}(u), u).
\]
This completes the proof. \(\square\)

Note that the functions \(F^a_s(z, \bar{z}, u)\) in Lemma 1 are functionals of the function \(p(u)\), i.e., functions of the function \(p(u)\) and its derivatives. The highest order of the derivatives of the function \(p(u)\) in \(F^a_s(z, \bar{z}, u)\) depends on the type \((s, t)\) of \(F^a_s(z, \bar{z}, u)\).

2. Zero Levi form

We shall study a generic CR submanifold \(M\) with Levi form \(L\) vanishing identically on \(M\).

Lemma 2. Suppose that a generic CR submanifold \(M\) is defined near the origin by
\[v = F(z, \bar{z}, u) = \sum_{s+t \geq 2} F^a_{st}(z, \bar{z}, u). \]

Then the \(u\)-plane, \(z = v = 0\), is on \(M\) and
\[2dd^c \rho \big|_{z=v=0} = 2i \sum_{\alpha, \beta = 1}^{n} \left(\frac{\partial^2 F}{\partial z^\alpha \partial \bar{z}^\beta} \right) (0, 0, 0, u) dz^\alpha \wedge d\bar{z}^\beta, \]
where
\[\rho = -v + F(z, \bar{z}, u). \]

Proof. By the definition of \(d^c\), we have
\[2id^c \rho = \sum_{\alpha = 1}^{n} \left(\frac{\partial \rho}{\partial z^\alpha} dz^\alpha + \frac{\partial \rho}{\partial \bar{z}^\alpha} d\bar{z}^\alpha \right) + \sum_{\alpha = 1}^{m} \left(\frac{\partial \rho}{\partial w^\alpha} dw^\alpha + \frac{\partial \rho}{\partial \bar{w}^\alpha} d\bar{w}^\alpha \right). \]
Thus we obtain
\[
2i dd^c \rho = -2 \left(\sum_{a,b=1}^n \frac{\partial^2 \rho}{\partial z^a \partial \bar{z}^b} dz^a \wedge d\bar{z}^b + \sum_{a=1}^m \frac{\partial^2 \rho}{\partial w^a \partial \bar{w}^b} dw^a \wedge d\bar{w}^b \right)
\]
\[
-2 \sum_{a=1}^n \sum_{a=1}^m \left(\frac{\partial^2 F}{\partial z^a \partial w^a} dz^a \wedge dw^a - \frac{\partial^2 F}{\partial \bar{z}^a \partial \bar{w}^a} d\bar{z}^a \wedge d\bar{w}^a \right)
\]
\[
= -2 \sum_{a,b=1}^n \frac{\partial^2 F}{\partial z^a \partial \bar{z}^b} dz^a \wedge d\bar{z}^b - \frac{1}{2} \sum_{a=1}^m \frac{\partial^2 F}{\partial w^a \partial \bar{u}^b} dw^a \wedge d\bar{u}^b
\]
\[
- \sum_{a=1}^n \sum_{a=1}^m \left(\frac{\partial^2 F}{\partial z^a \partial u^a} dz^a \wedge dw^a - \frac{\partial^2 F}{\partial \bar{z}^a \partial \bar{u}^a} d\bar{z}^a \wedge d\bar{u}^a \right).
\]

Note that the generic CR submanifold M contains the u-plane, $z = v = 0$, since
\[
F(0,0,u) = 0.
\]

Further, the condition
\[
F_{10}(z, \bar{z}, u) = F_{01}(z, \bar{z}, u) = 0
\]
gives the following equality on the u-plane
\[
2i dd^c \rho|_{z=v=0} = -2 \sum_{a,b=1}^n \left(\frac{\partial^2 F}{\partial z^a \partial \bar{z}^b} \right)(0,0,u) dz^a \wedge d\bar{z}^b.
\]

This completes the proof. \square

Note that the differential system defined by
\[
d\rho_1 = \cdots = d\rho_m = d^c \rho_1 = \cdots = d^c \rho_m = 0
\]
along the u-plane on M in Lemma 2 is given by the complex tangent planes of the variable z in $\mathbb{C}^n \times \mathbb{C}^m$. Thus the Levi form L on M in Lemma 2 is faithfully represented on the u-plane by the two-form in (10).

Lemma 3. Suppose that an analytic generic CR submanifold M is defined near the origin by
\[
v = F(z, \bar{z}, u) = \sum_{s,t \geq 1} F_{st}(z, \bar{z}, u)
\]
and the Levi form \(L \) on \(M \) vanishes identically. Then

\[
F(z, \bar{z}, u) = 0,
\]

i.e., \(M \) is a plane \(\mathbb{C}^n \times \mathbb{R}^m \) defined by \(v = 0 \).

Proof. Let \(M' \) be the generic CR submanifold obtained from \(M \) by the biholomorphic mapping as in (7)

\[
z = z^* + p(w^*),
\]

\[
w = w^* + g(z^*, w^*)
\]

for a given function \(p(u) \). Then \(M' \) is given near the origin by

\[
v = \sum_{s,t \geq 1} F^*_s(z, \bar{z}, u),
\]

where

\[
F^*_s(z, \bar{z}, u) = \left(\text{Id} - B_{00}(0, 0, u) \right)^{-1} A_{11}(z, \bar{z}, u).
\]

Since the generic CR submanifold \(M \) is defined by

\[
v = F(z, \bar{z}, u) = \sum_{s,t \geq 1} F_{st}(z, \bar{z}, u),
\]

we have the following equalities

\[
\sum_{\alpha=1}^n z^\alpha \left(\frac{\partial F}{\partial z^\alpha} \right)(z, \bar{z}, u) = \sum_{s,t \geq 1} s F_{st}(z, \bar{z}, u),
\]

\[
\sum_{\alpha=1}^n \bar{z}^\alpha \left(\frac{\partial F}{\partial \bar{z}^\alpha} \right)(z, \bar{z}, u) = \sum_{s,t \geq 1} t F_{st}(z, \bar{z}, u),
\]

\[
\sum_{\alpha, \beta=1}^n z^\alpha \bar{z}^\beta \left(\frac{\partial^2 F}{\partial z^\alpha \partial \bar{z}^\beta} \right)(z, \bar{z}, u) = \sum_{s,t \geq 1} st F_{st}(z, \bar{z}, u).
\]
Then from Lemma 1, we obtain
\[
\sum_{\alpha,\beta=1}^{n} P^{\alpha \beta} \left(\frac{\partial^{2} A_{11}}{\partial z^{\alpha} \partial \bar{z}^{\beta}} \right) (0,0,u) = \sum_{s,t \geq 1} s t F_{st}(p, \bar{p}, u) \\
- \iota \left\{ \sum_{s,t \geq 1} s F_{st}'(p, \bar{p}, u) \right\} (I d + i F')^{-1} \left\{ \sum_{s,t \geq 1} t F_{st}(p, \bar{p}, u) \right\} \\
+ \iota \left\{ \sum_{s,t \geq 1} t F_{st}'(p, \bar{p}, u) \right\} (I d - i F')^{-1} \left\{ \sum_{s,t \geq 1} s F_{st}(p, \bar{p}, u) \right\} \\
- 2 F''(I d - i F')^{-1} \left\{ \sum_{s,t \geq 1} s F_{st}(p, \bar{p}, u) \right\} \\
\times (1 + i F')^{-1} \left\{ \sum_{s,t \geq 1} t F_{st}(p, \bar{p}, u) \right\},
\]
\[
(11)
\]
where
\[
\left\{ F_{st}'(p, \bar{p}, u) \right\}_{ab} = \left(\frac{\partial F_{st}^a}{\partial u^b} \right) (p, \bar{p}, u).
\]

Note that the Levi form \(L' \) on \(M' \) vanishes identically whenever the Levi form \(L \) on \(M \) vanishes identically. By Lemma 2, the function \(F_{11}^a(z, \bar{z}, u) \) vanishes identically for any function \(p(u) \). Thus the equality (11) yields the following identity
\[
\sum_{s,t \geq 1} s t F_{st}(z, \bar{z}, u) \\
= \iota \left\{ \sum_{s,t \geq 1} s F_{st}'(z, \bar{z}, u) \right\} (I d + i F')^{-1} \left\{ \sum_{s,t \geq 1} t F_{st}(z, \bar{z}, u) \right\} \\
- \iota \left\{ \sum_{s,t \geq 1} t F_{st}'(z, \bar{z}, u) \right\} (I d - i F')^{-1} \left\{ \sum_{s,t \geq 1} s F_{st}(z, \bar{z}, u) \right\} \\
+ 2 F''(I d - i F')^{-1} \left\{ \sum_{s,t \geq 1} s F_{st}(z, \bar{z}, u) \right\} \\
\times (I d + i F')^{-1} \left\{ \sum_{s,t \geq 1} t F_{st}(z, \bar{z}, u) \right\},
\]
\[
(12)
\]
In the identity (12), we expand the right hand side with respect to \(z \) and \(\bar{z} \). Then we observe that the function
\[
\sum_{s,t \geq 1, s+t=k} s t F_{st}(z, \bar{z}, u)
\]
is represented by a linear combination of products of the following functions

\[F_{st}(z, \bar{z}, u) \quad \text{for} \quad s + t \leq k - 2, \]
\[F'_{st}(z, \bar{z}, u) \quad \text{for} \quad s + t \leq k - 2, \]
\[F''_{st}(z, \bar{z}, u) \quad \text{for} \quad s + t \leq k - 4, \]

where

\[\{ F'_{st}(z, \bar{z}, u) \}_{ab} = \left(\frac{\partial F_{st}^a}{\partial u^b} \right) (z, \bar{z}, u), \]
\[\{ F''_{st}(z, \bar{z}, u) \}_{abc} = \frac{1}{2} \left(\frac{\partial^2 F_{st}^a}{\partial u^b \partial u^c} \right) (z, \bar{z}, u). \]

We easily see that

\[\sum_{s, t \geq 1, s + t = 2, 3} sF_{st}(z, \bar{z}, u) = 0 \]

so that

\[F_{st}(z, \bar{z}, u) = 0 \quad \text{for} \quad s + t = 2, 3. \]

As inductive hypothesis, we suppose that

\[F_{st}(z, \bar{z}, u) = 0 \]

for \(s + t = k \geq 4 \). Then we obtain

\[\sum_{s, t \geq 1, s + t \leq k + 2} sF_{st}(z, \bar{z}, u) = 0 \]

so that

\[F_{st}(z, \bar{z}, u) = 0 \quad \text{for} \quad s + t \leq k + 2. \]

Therefore we conclude that \(F(z, \bar{z}, u) = 0 \). This completes the proof. \(\square \)

Hence we have proved the following theorem

Theorem 4. Let \(M \) be an analytic generic CR submanifold of codimension \(m \) with zero Levi form defined by

\[v = F(z, \bar{z}, u), \quad F| = dF| = 0. \]

Then \(M \) is locally transformed to a plane \(\mathbb{C}^n \times \mathbb{R}^m \) defined by

\[v = 0 \]
by the following biholomorphic mapping

\begin{align}
 z &= z^*, \\
 w &= w^* + g(z^*, w^*),
\end{align}

where the function \(g(z, w) \) is implicitly defined by

\begin{equation}
 g(z, w) = -iF(0, 0, w) + 2iF(z, 0, w - \frac{i}{2}F(0, 0, w) + \frac{i}{2}g(z, w)).
\end{equation}

Let \(\phi \) be a biholomorphic mapping near the origin, which transforms the generic CR submanifold \(M \) in Theorem 4 to the plane \(v = 0 \). Then the mapping \(\phi \) is factorized to the mapping (13) and an element of the pseudo-group of the local biholomorphic automorphisms of the plane \(v = 0 \) such that

\begin{align}
 z^* &= f(z, w), \\
 w^* &= q(w)
\end{align}

where

\[\text{det}(f_z|_0) \neq 0, \quad \Re q(u) = 0 \quad \text{and} \quad \text{det} q'(0) \neq 0. \]

Note that the biholomorphic mapping (13) is a local trivialization of a family of complex manifolds of complex dimension \(n \) parametrized by a subset of \(\mathbb{R}^m \). Thus the analytic generic CR submanifold \(M \) with zero Levi form is locally foliated into complex manifolds. Further, the leaves of the complex foliation on \(M \) are locally given by the complex submanifold near the origin as follows

\[w = \tau + g(z, \tau) \]

for \(\tau \in \mathbb{R}^m \), where the function \(g(z, \tau) \) is defined by the equation (14).

Corollary 5. Let \(M \) be an analytic generic CR submanifold of CR dimension \(n \) with zero Levi form in a complex manifold. Then there is an open neighborhood \(U \) of each point of \(M \) such that \(M \cap U \) is an analytic foliation of complex manifolds of complex dimension \(n \).

This corollary is a well-known special case of a general result (cf. [1]). The significance of this article is that we do not require Frobenius theorem and Newlander-Nirenberg theorem/Levi-Civita theorem in the proof (cf. [1]).
References

Department of Mathematics
University of Seoul, Korea
E-mail: wonkpark@mindmath.uos.ac.kr