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PLANCHEREL AND PALEY-WIENER THEOREMS
FOR AN INDEX INTEGRAL TRANSFORM

Vu KM Tuan, ALl IsMAIL, AND MEGUMI SAIGO

ABSTRACT. An integral transform with the Bessel function J,(2)
in the kernel is considered. The transform is related to a singu-
lar Sturm-Liouville problem on a half line. This relation yields a
Plancherel’s theorem for the transform. A Paley-Wiener-type theo-
rem for the transform is also derived.

1. Introduction

In this paper, we will derive and study the following pair of transforms

(1) Gl7)

Il

/0 S { [ cos .- (1) — sin e}, (1)] T () } g (2) %,
-7 3T

ae [ oJu[Fa]

gt) — /O' 2r Sy { [COS ati (1) — smaJW(l)] J_W(t)} G{7)

sinh 7 [cos aJi; (1) — sin aJ’_(1)° ’

(2)

where J,.(x) is the Bessel function of the first kind of order ¢[1], and Sz
denotes the imaginary part of 2. An extensive table of integral trans-
forms involving the Bessel functions in the kernels is collected in [6].
Since the integration in (2) is with respect to the order of the Bessel
function, such a pair of integral transforms is called index transform.
Details about many other index transforms can be found in [15].
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In Section 2, we will show that the pair of transforms (1)-(2) arises
from a singular Sturm-Liouville problem on a half line. As a conse-
quence, a Plancherel’s theorem and a Parseval’s formula for the pair of
transforms (1)-{2) will be established.

In Section 3, we will characterize function g(¢) as the transform (2)
of a function G(7) with a compact support. The classical Paley-Wiener
theorem [5] for the Fourier transform gives a characterization of the
space of square integrable functions with compact support in terms of
its image under the Fourier transform by showing that f ¢ Lz(R) has
a compact support if and only if its Fourier transform f can be con-
tinued analytically to the whole complex plane as an entire function of
exponential type whose restriction to the real axis belongs to Ly(R).
Notwithstanding the strength of its statement, the proof of the theorem
does not lend itself very naturally to other integral transforms. Alter-
native approaches using real analysis techniques have been developed to
characterize the images of spaces of the form Ls[/, dp], for some mea-
sure dp and a finite interval I under various integral transforms, such
as the Mellin [12], Hankel [11], ¥[10], and Airy transforms (13]. Re-
cently in [14], a unified approach to derive Paley-Wiener-type theorems
for a large class of integral transforms that includes not only most of the
above transforms, but also any new ones, has been developed. This class
of integral transforms arises from two types of singular Sturm-Liouville
problems: singular on a half line and singular on the whole line. The
latter is more complicated, but includes more interesting examples. The
approach can be briefly described as follows [9].

Let L be a differential operator with a continuous spectrum {2, and
$(x, ) be an eigenfunction with corresponding eigenvalue A: L = —A¢.
In addition, suppose that 7 : Lo($; dpy) — La(€s;dpa)

#(z) = (TF)(z) = / F)o(, ) dpr (M)

1921

is a unitary transformation
F@P dm@) = [ 1P dari).
Qs 11
In that case, if A*F(\) € La($; dp1), we have

L'f(z) = A (=A)PF(N)p(z, A) dpi (M),
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and

(3) [ 1@ dpae / ) dpy(A).
2
Raising both sides of (3) to the power 1/(2n) and taking the limit as
n — 0o, we get
- i 1fn
(4) TP_{EJIL f(ﬂf)HLg(ﬂg dp) = AeiE;EFIAl'
where supp F' denotes the support of F, the smallest closed set, outside
which the Tunction ¥ vanishes almost everywhere.
From {4} it is obvious that if

(5) hm HL"f(z)”Lz (@ dpny =

then F has a compact support. Hence, formula {4) plays a decisive role
in studying integral transforms of functions with compact supports. It
can be shown {9, 14] that under some "extra conditions” on f inequality
(5) gives the necessary and sufficient condition for a function f to be a 7™
transform of a function F' € Ly(£}y; dp;) with compact support. Formula
(4) has been first discovered in [2] for one-dimensional Fourier transform
with I = =, and independently in [3, 8] for multidimensional Fourier
transform Wlth L being the Laplacian or any polynomial differential
operator. In this paper, such approach will be applied to obtain a Paley-
Wiener-type theorem for the transform (2).

2. A related singular Sturm-Liouville problem

In this section, we will show that the pair of transforms (1)-(2) can
be interpreted as an eigenfunction expansion associated with a singular
Sturm-Liouville problem on a half line. As a consequence, a Plancherel
theorem for the pair of transforms (1)-(2) is established.

Let us consider the general singular Sturm-Liouville problem on the
half line

d2

(6) Ly = d—;é —glz)y=—-Ay, 0<z<©
with
() y(0)cosa + 4y (0)sine = 0, 0<a<27,

ly(o0)| < o0,
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and ¢(r) is assumed to be continuous on R* = [0,00), and ¢(z) €
Ly (R7). Under this assumption, the spectrum of the operator L consists
of the continuous part R* and a possible finite discrete part on {—o0, 0)
4, 7].

Let ¢{z, ) and f(z, A) be the solutions of equation (6) satisfying the
initial conditions
(8) #(0,A) =sine, &0, A} = —cosa,

8(0,A) = cosa, ¢'(0, ) = sina.

Throughout the paper ¢'(z, A) will mean %qﬁ(m, A).

It is known [7] that any non-real A, there exists a function m(}),

analytic in the upper and lower half planes that are not necessarily
analytic continuation of each other so that

(9) Pz, A) = 8(z, A) + m(A)d(z, X)
as a function of z, is in Ly(R*) for non-real A. Moreover,
A
(10) L lim [ & m(u+8) du = p()),
7 -0 fy

where p(}) is a non-decreasing function. We assume that the discrete
part of the spectrum is empty, that is the case, when m()) is real-valued
on the negative axis and has no poles there. in this case, it is known
fact [7] that if f(z) € Lo(R*), then

(1) FO) = [ f(@p(e, N do
0
belongs to Lo (R*, dp) and

(12) 1) = [ FO6t N dol)

with

(13) [ Fllzagrey = 17| zagrer an)-

Here the integral f;° with respect to z is interpreted as limpy_,c fON with

convergence in the metric of Ly(R*, dp), while the integral [ with re-

spect to A is interpreted as limpy. .o fON with convergence in the metric
of Ly{R"). Conversely, if F(A) € Ly(R", dp), then f(x), given by (12),
belongs to Ly(R*) and formula (11) holds.
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Now we are ready to consider the following particular singular Sturm-
Liouville problem

(14) y=y +e®y = Ay, 0<z< 0,
y(0)cosa+y'(0)sine = 0, 0<a<2m |y(oo) < oo,

Since g(z) = —e~* € L;(R"}, the continuous part of the spectrum of the
singular Sturm-Liouville problem {14) is R". A later computation will
show that under some restriction on « the discrete part of the spectrum
is empty. :

Making the change of variable ¢ = e~ transforms equation (14) into
a Bessel differential equation

whose general solution is [1]

y(t) = aJ 5(6) + 0T x(E)-
Hence, the general solution of equation (14) is
y(z) =t x(€7) + bz (€77).
The solution ¢(z, A) satisfies the initial conditions
#(0,A) =sine, ¢(0,A) ="cosa.
Thus
at, 5(1)+bJ_; 5(1) = sina,
aJ (1) + b, £(1) = coso.
Using the Wronskian equality for the Bessel functions [1)

2 sin(mr
(15) W) Joole) o= D)) — Tya o) = 2]
to solve this system of equations, we get
)
a = ————{sinaJ  ~(1)—cosal_ (1)},
2sinh(mvX) (sina 51 D)

ir)
— {cosaJ. ~(1)—sinat ~(1)).
2sinh{mvA) ( wall) “/X( ))
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Thus,
1) $@N
)

~ sy (o7 a0 sl ) Jsle )

+ (COS ad; 5(1) — sinanﬁ(l)) I [e"’)] .

If A > 0, then J_; 5(2) = Jyyx(x), J', 5(z) = J; () and formula (16)
can be simplified further:

6@

= sane 7 (TR — cosad 5(0) T e

_ (sinaj:ﬂ(l) — cosaJiﬂ(l)) Jﬂ;\/x(e_m)}
- Sinh(:\/x) N {[COSQJ“/XU) N sinaJ:ﬁ(l)} J‘“/X (e_m)}

Similarly, the solution #(x, A) satisfies the initial conditions

#(0, M) = cos e, Gr(D, A) = sina,

that yields

al, 51 +bJ , 5(1) = cose,
aJ; (1) +bJ. (1) = —sina.

Solving this system we get

Tt
g=——— {cosat 1 +sinad , 5(1)),
2 sinh(7v/) ( ’“ﬁ( ) al ))

— _—m'__ ' .
i 2 sinh(mv/A) (COSGJiﬁ(l) Tsn aJZ‘/X(l)) ’
Therefore,
(18)  8(z,))
T : - B
= Zenb (V) Kcos at , ~(1) -}-SlnaJﬂvf/\(l)) g5 (€7

— (cos ol (1) +sin aJWq(l)) J_ivx (e'm)] :
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We have
Bz, A) + m()\)qﬁ(m, A)

= 3 b \/_ [ cos & + sin am(A) )J (1)
sinh (7

(
(19) +{sina — cosam(A) NI (L) ]Jz‘\/i {e )
(

~ 2sinh m/‘ )[ cos v+ sin am(A)}J] 5(1)

+(sinox — cosam()\))Jiﬁ(l)] I mle7).

Using the asymptotic formula for the Bessel function

zln'
(20) W& =gt ToE)). 0
we get
J o e_Tﬂ/X:E 1 O .
wile™) = g o) e
emf)‘\:n

J_i5 (e %) = _ —z‘I\/XI‘( Y D (l 4+ 0 (6_22)) , T — 00.

Hence, if S\ > 0, then J_, ;5 (e7®) € Lo(RY), but J, 5 (e ™) ¢ Lo(R").
Consequently, for SA > 0 the function 8(z, A) + m(A)é(zx, A) belongs to
Ly(R7) if and only if the coefficient of J, 5 (e7) in the formula (19)
vanishes:

(cosax + Sinam(/\))J'_iﬁ(l) + {sinor — cosam(A))J_,5(1) =0.

Solving this equation we obtain

cosat’, ~(1) +sinad_ (1)

(21) m(}) = cosad_, (1) ~ Sina:]iu/x(l).

Since lims_g, m{X +18) = m{A) for A € R, A # 0, it follows from (10)
that )

dp(\) = ~=Im(N) A, AER, A£Q,
If X <0, then J , (1) = m(l) and J' ~(1) = J'\/m(l), therefore,

Fm(A) = 0. Consequently, the negative part of the spectrum is discrete.
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From the integral representation [6]

Sz}

x 1
= cos(zsint)(cost)¥ dt, v > 2,

AT (T ) | costesintiteost) 2
it is clear that J,(1) is positive when » is positive. Moreover,

1 7
Jo1(l) = ———— cos(sint)(cost}*¥ 2 dt
) = g/, estendieost)
1 1 LI Jo(1)
8 dt = :
2 1 1T (v +0) /0 cos(sint)(cost) w1
Hence, applying the relation [6)]

'

J (@) = 23,(@) = Jun(@)

we get

J;(l) _ Ju+l(1)

1
- > —1
LAY T T wra :
if v is positive. Thus, the function

cos aJ\/m(l) - sinaJ:/m(l)

has no zeros if —T < a < 0or ¥ < o < x. Consequently, m{}) has no

poles on the negative axis, and therefore, the discrete negative spectrum
is empty.

Thus, we can assume that A > 0. We have

o (cos a:JLW,X(I) —I—SinaJ_Nj(l)) (cos ad, 5(1) —sin ajgﬁ(l))
m -
(cos aJ_; s5(1) —sin aJ’_w,x(l)) (cos ad, 5(1) —sin an’ﬁ(l))

_ cos® a Jy 5(1) I, 5(1) —sin® e J_; 5{1) T/ (1)

P
‘cosanﬁ(l) — sin anﬁ(l)‘

sin v cos a (|Ji\/;(1)|2 - ‘Jéfﬁ(l)f)
+ .

7
‘COS oty 5(1) — sinaJiﬁ(l)(
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Therefore, since

2
Jwﬁ(l)‘ -

sin o cos & (

Jfﬁ(l)z)

b
‘cos ad; 5(1) — sin aJé\/X(l)‘

has no imaginary part, we have

coslaJ (N J . (1) —sinfad . (1) JF ~(1
Sy = &SIl L) s (D) T 500

)cos alt, (1) — sinch;v,X(l)’2
cos? o [V (1) 7, 5(1) = Tog D T, D)
2 ‘cos aJ; 5(1) —sin aj,-'ﬁ(l)‘z
sinar [1_;5(1) 1 (1) - T @ TL50)]
24 ‘cos al, 5(1) — sinon:‘/X(l)’2
Tx(W I, (1) = T 5 (D) T 5(1)
2 Lcos ad, (1) ~ sina:th\/x(l)‘2
B sinh /A
- ™ |cos o, (1) - sinan’\//—\(l)r‘

Consequently,

(22)  dp(\) = —=Sm())dA
inh v/ A
- sinh 7/ SdA, A 0.
2 ‘cosa‘fzﬁ(l) —sinaJ] (1)

We arrive at the following pair of integral transforms

T oa
23) F(x Z—/ B¢ [eosad, g(1)—sinad’ (1T (e} f(z dﬁ:,
(23) F'(A) ey {[eosadmtv)-sinat! fi0]d_ (e} i)
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(24) f (ozz) |
- l smhﬂm/x S { [ecosad5(1) ~sinal (1)) s () |
sinh mv/A

- F(\) dA
72 *cos ad, (1) — sin aJé’ﬁ(l)‘

_ /oo & {[cos aJ, (1} — sin an’\/X(l)] I (6*5)} F{A) "

2
™ |cos ad, 5(1) — sinaJi’ﬁ(l)l
with the Parseval equality

&0 o sinh mv/A
@) [ Ir@Pa— | L IFOOP .
0 0 g2 ‘cosaqu(l) - sinaJ;ﬁ(l)

m

(26) et =1, \/X =T, f(ﬂ;‘) = g(t), (A) = G(T)w

we finally arrive at the pair of transforms (1)-(2):

1
(27) 6(r)= 9 {leosadi (1) —sinali (] L (0} 5(6) .
0
* 2 3 o 1) —si ; —r
(28) g(t)z/ T3 {['cosaJ (1) smaJ”(.l)] J (t)g G(‘T‘)dT
0 sinh 77 |cos at, (1) — sinaeJ! (1)
and the Parseval equality takes the form

(29) L‘ [g(t)|2% :./DOO 2r |G(T)’2

sin b |cos adi(1) — sinet’ (1))

?

Thus we obtain

THEOREM 1.(Plancherel’s Theorem) Let o € [—%,0] U [, 7|, The
integral transform (27) is a homeomorphism from the space Lo ({0, 1], t71d¢)
2r
sinhwrlcosa.fﬁ(lksmc:J,’T(l)‘

ing the form (28). Moreover, the Parseval equality (29} holds.

onto the space Lo (Rﬂ y d7 }, with the inverse hav-
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The integral fol in (27) with respect to ¢ is interpreted as lim, o, [ !

27
)
sin.h’.'r'rlcos adi(L)—sinad] (1) |

with convergence in the metric of the space L, (R+,

d’r) and the integral [ in (28) with respect to 7 is interpreted as

im0 fUN with convergence in the metric of the space L, ([0, 1},47" dt}.
As an example take o = 0. We get the pair of transforms

(30) 6r) = [ {0 ®}0 T,

/oo 2r ${Je())-r () } G(7)
0 sinh 7t |J5T(1)|2

(31) g(t) =

?

with the Parseval equality

1 20t [ 27|G(n))? -
(32) /Olg(t)l t _/0 sinhwr | T (D)

3. A Paley-Wiener-type theorem

Throughout this section we agsume a € [—f, 0] U [3—4’5, 7r]. Let

(33) O(t, 1) =S { [COS aJ, (1) — sin aJ{T(l)] J_sr (t) }
Then

(34) D® .= (tzg—; + t% +t2) ®(t,7) = —72®(t,T)
and

‘ 1
(35) o(1,7) = L gna sinhwr, @ (1,7)= —=cosa sinhnr.
T ™
Hence,

(36) cosa ®(1,7) +sina® (1,7) = 0.

H

Moreover, from the asymptotics of J_,.(¢) (see formula (20)) it is clear
that ®(¢,7) and ¢® (¢,7) are uniformly bounded with respect to T as
t — 0+. Denote
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27
37 dé(r) = dr.
57 ) sinh 77 |cos ati(1) — sin e, (1) !

The pair of transforms (1)-(2) takes a simpler form

(39) 6 = [ etnan T
(39) o) = [ 2t G,
and the Parseval equality (29) becomes

1 5]
(10) [ r S = [ emr e,

We will study now the transform (39) called the ®-transform. The trans-
form {24) is named the ¢- transform.

LEMMA 1. Let (1) be such that T"G(t) € Ly(R",df) for all n =
0,1,2,.... A function g(t) is the $-transform (39) of G if and only if
i) g(t) is infinitely differentiable on (0,1), and (D"g)(t) € L, (i0, 1],
tL, dt) foralln=20,1, 2, ...
i) limy_o, (D79)(t) = limy ot £(D"g)(t) =0 foralln=0,1, 2,...
iii} Hm,i- {cos a (D"g)(2) +sina 2(Dg)(t)} = 0 for all n = 0, 1,
2 ...

Proof. Necessity: Let 7°G(7) € Ly( R, d¢) for any n. Then A"F(X) €
Ly(R*,dp) for any n, where F and G are related by the formula (26).

i) Let f{z) and h(x) be the ¢-transformations (24) of F'(A) € Lo (R*,dp)
and AF(X\) € Ly(R*,dp), respectively. Then both f and h belong to
Ly(R*).

The Green’s function G(x,y, 4) of the problem (14) is defined for u
non-real as [4, 7)

_ ’{b(.’L’, ,u)qb(y,,u), K] <z
() Gloyp) = { P, )by, p), =<y’

with ¢ and ¢ being defined as in (8) and (9), respectively. If k € La(R¥),
then by R,k we denote the resolvent function of the boundary value
problem (14)
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FE = [ " G,y pk(y) dy
(42) ~ V) [ " bly, 1)) dy + Bl 1) / "y, 1h(y) dy,

which is easily seen to be in Ly(R*) for u non-real. Moreover, R,k is
twice differentiable and (L + p)R,k = k [4, 7], where the operator L is
defined in (14). The resolvent function R,k has the following integral
representation [4]

(43) fGa:y,u)ky)dy—/ oz, A) (,\ dp(A), w non-real,

where K'(}) is the transform (23) of &(x).
Since f,h € Ly(R*), the integral representations of the form (43) of
the resolvent functions R, f and R\ yield

1) = [ = Note N2k )

- /M»\F(*) o= [ o@n T ol

A
= Ry(uf—h)(z)
where g is 2 non-real number. Because uf —h € Ly(R™), R, (uf — h)
is twice differentiable, so is f. Hence, g{t) = f{—Int) is also twice
differentiable. Moreover,

(L+p)f =L+ p)Ry (uf —h)=uf - h.

Hence, Lf = —h. Making the change of variables ™% = ¢ and v/ = 7,
we get Lf = Dg and

(44) Dalt) = — /0 "RG0, ) ).
By induction ¢ne can show that
(45) (P30 = [ (=6 n ),

for any n. It means g is infinitely differentiable. Because T2RG(:?') €
Ly(R*, d€) it follows from the Plancherel theorem that (D"g){t) € L
([0,1],¢1dt) for any n.
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ii) Since h € Ly(R*) and Lf = —h, then Lf € Ly(R" ) Because
q(z) = —e™*® is bounded, ¢f € L;(R7), and therefore ' = Lf+
gf € Ly(R"). Hence, zero—extenswns of f and f' to the negative axis
that we denote again by f and f" belong to Ly(R). Now the fact that
f. " € Ly(R) yields f* € Ly(R), that means, the restriction of fon
R* belongs to Ly(R*). In fact, if we denote the Fourier transform of

f(z) by f(w), then the Fourier transform of f’ and f" are iw f(w) and
(iw)2f (w), respectively. To show that f' € Ly(R) it suffices to show that
wf{w) € Ly(R). But this follows from the Cauchy- Schwarz inequality

/_:wT! If(w).z dw < (]_Zuf‘ 'f(w)r dw) (f_:\f(w)‘z dw) < 0.

The last inequality holds since f(w) and w?f(w) are in La(R).
Now we have

ff 5)dz = f(a) — £(0).

But since f(z)f'(z) € Li(R"), the limit of the right-hand side exists as
x — oo. Consequently, lim,_q, f2(z) exists. But f € Ly(R*'), then the
limit must be zero:

lim f(z) =0.

T—C0
Similarly, from the relation

2 [ F@)f @) iz = e - 10
and f' € Ly(R*) it follows
lim f'(x) = 0.
Making the change g(t) = f{—Int) completes the proof of ii) for n = 0.

The general case can be proved in a similar way.

iii) Since both (D"g)(t) and 4(D"g)(t) are continuous at ¢ = 1, by
taking the limit of (45) as ¢ — 1—, we have

tlirE(D”g)(t) = (D"g)(1) = fom(—TQ)" G{r)®(1,7) dé(1) = Ansina,

where -
A, = l/ (—r%)" sinhwr G(7) d&(T),
0

™
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and

lim $(D"9)(1) = <(Dg)(1)

= /ODO(_#)” G(r)®'(1,7)dé(r) = —A,cosa.

Hence,

tl—l.lﬁ {cosa (D"g)(t) +sine %(D“g)(t)} =

Sufficiency: Let g satisfy conditions i)-iii) of the lemma. We need only
to show that

dt

(10 (-re = [ (D9meen

'Then, because (D"g)(¢) € Ly ([0, 1];¢7'dt), the Plancherel theorem im-
plies {—72)" G(1) € Lo(R*,d€). Hence, 7 G(7) € Ly(R*,dE) for any
n.

We use induction on n. Clearly, formula (46) holds for n = 0. Let it
hold for n. Then, in view of {34) integration by parts gives

e = [ oranereen

_ /Ol(png)(t)m(t,f)?

_ /0 (D"g)(2) (t% L j +t) (1, 7)dt
= oo - oot )]

+ [rg e ¥

4]

1

0

But from (35) and property iii) it is easy to see that

an e [EOE) - HO0EO ¥ =0
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and, by property ii) and the boundedness of ®(2,7) and £¢'(f,7) as t —
0+, the same term also tends to zero as ¢ — 0+ . Therefore,

(e = [ O meen) T

0
and the induction is complete. O

LEMMA 2. Let g(t) be the ®-transform of a function G(7) as given
by (39)0. Let 7 G(r) € Lo(R™,df) for alln=0,1,2,.... Then

n1/(2n)
(48) hm |2 gHL’;(([gl gy = SUP T
TESUpp 7

Proof. From the relation

(D7g)(t) = (—1)" ] RG(r)B(t, 7 dE(7),

and the Parseval equation (43) we have

1D, qoncrar = / 70G(r) de (7).

First, let G have a compact support:  SUP,cappa™ = d < oo. Then

o ) )
ﬁ PG ) [ dE(r) — / G de(r) < 6 [ G ().

Hence,
g 5 1/(4n)
lim sup || D" gHL/z( g)‘-]i an S0 11msup {fo [elcalk df('r)} = 0.

=00

On the other hand, since § is the supremum of the support of G, we
have, for any €, 0 < € < 4,

&
[ eopam >o

Therefore,
§ 1/(4n)
hm mf ||D’"'g||l /2m) > lim inf TGP dE(T)
L] 01 L e e

1)

> (5 liTxgi;}f{ /;|G(T)Pdg(f)} _s—e
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Because ¢ > 0 is arbitrary, we obtain

1/(2
hm ”an“L/::({?)l]t 1agy = 0

Now let ¢ have an unbounded support. Then for any N large enough

I T le)P detr) > 0

Consequently,
1 /(om) ol /{4n)
hm ||D“g||h([01 a2 ”ILTO{_/JV ™ G(7)? d.f(‘r)}

oG 1/(4n}
Nﬁg{ﬁrw&wﬂﬂﬂ} ~ N

Because IV is arbitrary, we obtain

1/(2n)
mmmmg& gy = 00, .

A

Y

THEOREM 2. (Paley-Wiener-type Theorem) A function g(t) is the ®-
transform (39) of a function G (7} € Ly(R*, d€) with a compact support
if and only if g(t) satisfies conditions i)-iii) of Lemma 1 and

n_n1/(2n
(49) hm 1D 5’”1:/2([0)1 agy < 00

Proof. Let G(r) € Ly(R*, d€) have a compact suppori. Then 7"G(7) €
Ly(R*,d€) for all n = 0,1,2,... Consequently, by Lemma 1, g(t) satis-
fies conditions i}-iii), and by Lemma 2

n 11/(2n)
hm ”D 9”1,2([0 -ty EEE;;I;GT < oC.
Conversely, let g(t) satisfy conditions i}-iii} of Lemma 1 and (49). By
Lemma 1, g(t) is the ®-transform (39) of a function G{r) such that
T"G(T) € Ly(RY,dE) for all n = 0,1,2,... By Lemma 2 and equation
(52) we have

1/(2
sup T = hm ||Dn9||L’;(({(1)1:)1j,t*1dt) < 0.

resupp G

Hence, G(7) has a compact support. O
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