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STABILITY AND CONSTRAINED
CONTROLLABILITY OF LINEAR
CONTROL SYSTEMS IN BANACH SPACES

Vu NGoo PHAT, JONG YEOUL PARK, AND IL Hyo Jung

ApsTracT. For linear time-varying control systems with constrain-
ed control described by both differential and discrete-time equations
in Banach spaces we give necessary and sufficient conditions for ex-
act global mull-controllability. We then show that for such systems,
complete stabilizability implies exact null-controllability.

1. Introduction

Consider a linear time-varying control system described by differen-
tial equations of the form

z(t) = A{t)x(t) + B(t)ult), t=>0,
1) { z(t) € X, u(t) €U,

where X and U are infinite-dimensional Banach spaces; A(.) and B{(.)
are linear operators. From the classical control theory, it is defined
that system (1) is exactly null-controllable if every point * € X can
be controllable to the origin by some control « € U in finite time; ex-
ponentially stabilizable {in Liyapunov sense) if there exists an operator
function K{t)(.) : X — U,t > 0, such that all solutions z(t,z¢) of
the closed-loop control system & = [A(t) + B{(¢t) K (t}]z, with the initial
condition x({0) = zy, satisfy

| (t, o) < Me™*||lzofl, VE>0,

for some M > 0 and o > 0.
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The problems of controllability and stabilizability of control system
{1) or of its discrete analog were studied widely by many researchers
in control systems theory(see, e.g. [2, 5, 9-13, 16, 19, 22]) and refer-
ences therein. In particular, the relationship between controllability
and stabilizability was presented in [1] for time-invariant control sys-
tems, where X, U7 are finite-dimensional and it was shown that the
exact null-controllability implies exponential stabilizability. It is obvi-
ous that all exactly null-controllable systems are exponentially stabi-
lizable(see [4, 23]), however the exponentially stabilizable system is, in
general, not exactly null-controllable. If the time-invariant system is
completely stabilizable in a sense of Wonham [20], i.e., for an arbitrary
o > 0 there is a matrix K such that the matrix A + BK is exponen-
tially stable with the stability exponent ¢, then the system is exactly
null-controllable. A natural question is;: To what extent does complete
stabilizability imply exact null-controllability for infinite-dimensional
control systems? In the infinite-dimensional control theory [3] char-
acterizations of controllability and stabilizability are complicated and
therefore their relationships are much more complicated and require
more sophisticated methods. The difficulties increase to the same ex-
tent as passing from time-invariant systems to time-varying systems as
well as from unconstrained control systems to systems with constrained
controls. For time-invariant control systems without constrained con-
trols in Hilbert spaces, in a stronger type of complete stabilizability,
it was shown in Megan [7] and then Zabczyk [21, 23] that complete
stabilizability implies exact null-controllability.

In this paper, we first give necessary and sufficient conditions for
exact global null-controllability of continuous and discrete-time time-
varying systems, where the control w(k) is restricted to lie in some
subset £ in a Banach space U. Secondly, and more importantly, as an
extension of [7, 21], we show that for such control systems complete
stabilizability implies exact global null-controllability. Unlike usual
constrained controllability conditions expressed by the spectrum of the
adjoint operator A*(see, e.g. [10, 18]}, our controllability conditions are
described in terms of Schmitendorf and Barmish-type conditions [17],
which can be applicable to the stability analysis. To our knowledge, the
main results of this paper are also new for the case of finite-dimensional
control systems. Some constrained controllability results, Coroliaries
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3.1 and 3.2, are well-known for the finite-dimensional control systems,
but the proofs are different and our approach can be extended to the
study of the controllability and stability of some other classes of both
continuous-time and discrete-time systems with constrained controls
in Banach spaces.

The paper is organized as follows. In Section 2, we review main nota-
tions, definitions and give some auxiliary lemmas needed later. Global
mull-controllability conditions for both continuous-time and discrete-
time control systems with constrained controls in Banach spaces are
given in Section 3. In Section 4, we show that complete stabilizability
implies exact global null-controllability. Discrete analog of the result
is also given in this section.

2. Notations, definitions and preliminaries

Let X and &/ be infinite-dimensional Banach spaces. X* denotes the
topological dual space of X and < y*,r > denotes the valie of 4* € X*
at r € X. The adjoint and the inverse operator of an operator A are
denoted by A* and A™!, respectively. I denotes the identity operator.

In this paper, we use the following standard notations from [3, 6].

- R the set of all real numbers, Z*— the set of all non-negative
integers,

CB; = {z* € X* : |l2*||x- = 1}, X5 — X"\ {0},

- L{X,Y)— the Banach space of all linear bounded operators map-
ping X into Y,

- Ly ([0,t],U)— the Banach space of all U -valued strongly mea-
surable functions u(.) € U such that ||u||y is essentially bounded on
0,4,

- Ho(y*)— the support function of a set £ defined by

Hﬂ(y*) = Sup < ry*,u >5
uwef '

- M"— the polar set of a set M at 0 € M defined by
MO = {y* cX*:<ytz>< 1, VeeM}.
We shall consider control system (1), where z(t) € X, u{t) €  C
U7; 11 is a given nonempty subset in UJ. Throughout this paper, we as-

sume that A(t) and B(t) are strongly measurable and locally integrable
int > 0 and for every t > 0, A(t) € L(X,X), B(t) € L(U, X).
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For any T' > 0, the set of admissible controls on [0, 7] for system (1)
is defined as

Ur = {ul.) € Loo{[0, T}, U) : u(t) € ae. on 0,7}

Thus, as in [6], for each u(t) € Ur and zg € X, the unique solution
of (1) initiated at zg is given by

x(t, zo, u) = ©(t,0)zq +/0 &(t, s)B(s)u(s) ds,

where ¥(¢, 5) is a nonsingular evolution operator of the linear system
& = A(t)x satisfying

®(s,8) =1, ©7(t,5) = B(s,1),
®(t,5) = ®(t, 7)®(7,38), t>7>5>0.
DEFINITION 2.1. The time-varying system (1) is completely stabi-
lizable if for every a > 0, there exist a linear bounded operator function

K{){(.): X — Ot > 0 and a number M > 0 such that the solution
z(t, zg) of the system

(1.1) £(t) = [A(t) + BE)K(t)]z(t), 2(0) = 0,
satisfies the condition

lz(t, zo)|| < Me % ||zol|, V¢2=0.

In other words, if ®x (¢, s) is the evolution operator of system (1.1),
then the complete stabilizability is equivalent to

Vo>0,3K(#)(): X - Q, 3M > 0: [®x(t,0)|| < Me™™, ¥t 2 0.

Note that if the operator K and number M do not depend on «, then
the complete stabilizability implies exponential stabilizability in usual
Lyapunov sense (see [1, 23]).
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We now give analogous definition of the stabilizability for discrete-
time control systems of the form

@) { x(k + 1) = A(k)z(k) + B{k)u(k), ke ZT,
z(k) e X,u(k)e Q C U,
where A(k) € L£{X,X) and B(k} € L(U,X). It is obvious that for
every u € Uy = {u* = (u(0),u(1), ..., u(k — 1) € Q%) and zp € X, the
discrete-time control system (2) always has a solution z(k, zp, u)} with
z{0) = xp given by
k-1

(k, zo,u) = U(k,0)zo + > _ W(k,i+ 1)B(iju(i),
t=0

where ¥(k, ) is the transition operator defined by
U(k,i) = Ak — D)A{k — 2).. A(D), k>, ¥(k,k)=

DEFINITION 2.2. The discrete-time system (2) is completely stabi-
lizable if for every ¢ € (0,1}, there exist a linear bounded operator
function @(k)(.): X — Q,k € Z1 and a number M > 0 such that the
solution x(k,zo) of the system

(2.1)  x(k+1) = [A(K) + B(E)Q(k)]z(k), z(0)==z0, ke ZT,
satisfies the condition |
lz(k, zo)ll < Mq*|lzoll, V ke Z¥,
or equivalently,
|Toik,0)|| < M¢*, VkeZT,
where W (k,4) is the transition operator of the system (2.1).

To give controllability definition, let us define the reachable set of
the control system (1} from zp in time T' > 0 by

Bp(zg) ={z e X : 3 ut) €Uy, z(T,z0,u) =z},

= | Brizo),

T>0

and by

the reachable set of the system in finite time.
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DEFINITION 2.3. A point zo € X is said to be null-controllable by
the system (1) in time T > 0, if 0 € Ry(zo). The system (1) is globally
null-controllable if every point zg € X is null-controllable in some finite
time T > 0, i.e., 0 € R(zy) for all zg € X. Similar definition is applied
for global null-controllability of discrete-time system (2).

We need the following lemma for later use.
LEMMA 2.1. Assume that § is a convex, compact subset in U. Then

T
Vy* e X*:  sup <9, Lyu>= / Hp, (B*(S)‘I’“(ﬂ S)U*) ds,
4]

weldp

where Lyu = fUT ®(T,s)B(s)u(s) ds.

Proof. We shall prove the lemma, based on the same arguments used
in the proof of Theorem 5.3.8 in [1]. By the assumption that { is a
convex compact set, it is easy to see that the admissible control set
Uy is convex, weakly compact in Lo ([0,T),U) (e.g., [1, 3]). For every
fixed y*, the linear function u — F(y*,u) =< y*, Lyu > is weakly
continuous and it attains its supremum on the convex weakly compact
set Up at some u*(t) € Ur :

sup F(y*,u) = F(y*,u").

wEllp

Let ¢t € (0,7) = Iy and for every v € {2, we define
I“:{sER:t—l<s<t+£}ﬂfT.
n~ 7 '

and
B u*(ty ift e Ip\ IR,
uft) = .
v if t € I7.

For the admissible control @(t) € Uy, we have
Fly™,u*) 2 F(y", a},

and consequently,

J

T
T

< B*(s)@™ (T, s)y” . u™(s) > ds 2 / < B*(s)®* (T, 5)y",v > ds.

I3
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Denoting p(17) the Lebesgue length measure of I%, we have

1 1
< B*{(s)®" (T, s)y*,u*(s) > ds >
IR S <P ( AT

f;;a < B* ()™ (T, s)y*,v > ds.
Letting n — oo, we get, for all v & £}, the estimate
< BY()D (1, t)y", ut(t) >>< B*O®*(T, Hy*, v >,
and hence
< B*(t)@*(T, t)y", u" (t) >> Hao(B*{t)@" (T, t)y*).
Since u*(t) € §2, for every t € (0,7, we also get
< BY ()" (T, t)y*, u*(t) >< Ho(B*(t)®* (T, t)y*).
Therefore
(3) < B*(6)®*(T, t)y*, u*(t) >= Ha(B*{t)®* (T, )y™).

Integrating both sides of the equation (3) over [0, T], we obiain

T
POt t) = [ BB 0en @ o) dt
D
which proves the lemma. [
We first give a necessary and sufficient condition for the controlla-

bility of a point zg € X to an arbitrary convex set in a fixed time by
the system (21). For this, we consider the following operator equation

(4) z=Pxg+Tu, weldCU,
where © € L{X, X),T € L(U,X)},zg € X is a fixed element. As in {8],

the system (4) is controllable with respect to (xg,2, M) if there is a
u € U such that xg + Tu © M.
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LEMMA 2.2. ([8]) Assume that U is a convex, weakly compact sub-
set in U. The system (4) is controllable with respect (xo,14, M) if and
only if

vy* e M?:sup < ¢, Tu >>< y", Oxg > 1.
weld

REMARK 2.1. Note that if M = {0}, then M = X, and if we take
®=&(T,0), T=Ly, U=Ur

then from Lemmas 2.1 and 2.2 it follows that a point zg is null-
controllable at time 7' > 0 by system (1), where {2 is a convex, compact
subset in U, if and only if

yvte X*: J(T,zo,y") 20,

where

T
J(T,zo, ") = / Ha(B*(s)®*(T, s)y*) ds— < 2, @7(T, 0}y" > +1.
0

The similar result is obtained for discrete-time control systems (2}, -
where we define

k—1
Gk, mo,y™) = > Ho(B () ¥* (k,i+1)y")+ < 20, Uk, 0)y" > k € Zt.
=0

LEMMA 2.3. Assume that {) is a convex, compact subset in U, A
point o € X is null-controllable at step K > 0 by the discrete-time
control system (2) if and only if

Yyt e X* . G(K,ze,y") 2 0.

Proof. Assume that g is null-controllable at step K > 0, ie., 0 €
Ry (zg), where

K—1
Rae{o) :-{@(K,O)mu + 3 (K, i+ DBEul) i) € Qi =0,1,.. K - 1}.
i=0
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Therefore, for all y* € X*, we get

sup <yt z>><y*,0>=0.
sERK (zg)

By the definition of Ry (zo), we then have G(K, zq,y*) > 0 for all
y* € X*. Conversely, we assume that G(K, zg,%*) > 0 for all y* € X*,
By the assumption that } is a convex compact set, it is easy to see
that the reachable set Rx (zp) is also convex and compact. If a point
zo is not null-controllable at step K > 0, then 0 ¢ Rx(zp). By the
separation theorem of convex sets in Banach space [14], there exist
Yo € X* and some € > 0 such that

< Yot >< —¢, Vrc Rg(xg).

Therefore, we have

sup < yp,x ><0,
2E R (zo)

which contradicts the assumption and then completes the proof. O

3. Global null-controllability

Consider the time-varying control system (1), where, throughout
this section we assume that  is a convex compact subset in U. We
are now in position to prove the following theorem of the global null-
controllability of system (1).

THEOREM 3.1. If
{5)

T
Ve>0,dT>0: j Ho(B*(s)" (T, s)y*) ds > c||&* (T, 0)* ||, Y™ € X*
0

then the system (1) is globally null-controllable. Conversely, if the
system (1) is globally null-controllable, then

(6) vyt e X5 /000 Hq(B*(s)2"(0,8)y*) ds = +0.
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Proof. Assume that the condition (5) holds but the system (1) is
not globally null-controllable. Then we can find a point 2 which can

not be null-controllable in any time ¢ > 0. By Lemma 2.2 and Remark
2.1, for every t > 0, there is yi € X such that

t
T(t, w0 ) = 1— < 20, (8, 0)y} > +/ Ho(B(5)8* (£, s)y}) ds < 0.
a
Therefore
£
/ Ho(B*(s)®"(t, )yl ) ds << 0, *(t, 0)uf >< | < 2o, (2, 0)yf > |
0

< |lzofl@” (¢, O)g i,

which contradicts the condition (5).
Conversely, we assume that the system (1) is globally null-controllable,
but the condition (6) is not satisfied, i.e.,

(7Y  Ta>0,F5 € X5 : f Hq(B*(5)®"(0, s)yg) ds < a < Fo0.
0

For every ¢ > 0, we define

y =8 (3,0)y5.

Since ®*(t,0) is nonsingular, we get y; € XJ. Let us consider for any
2p € X, the following relation

£
J(t, w0, 95 ) = 1— < 2o, ®7(¢, 0)y > +/ Hq(B™(s)®" (4, s)y;) ds.
0

Since
& (t, 0)yr = ug, ®*(t,s) =2%(0,5)07(t,0),

we have

t
J(t,zo,y7) = 1= <o, 4 > +f Ho(B*(s)27(0, s)yg) de.
0
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From (7), it follows that
J(t, o, y7) < 1— <o,y >+ a.
Therefore, for any fixed € > 0, we take
zg = —(e+a+ 1)z,

where x; € X is chosen by the Hahn-Banach theorem [14], due to
ys # 0, such that < y3,z; >= 1. We then obtain

J(t:mﬂay:) < —e <0,

which implies, by Lemma 2.2, the point 2y can not be null-controllable
in any time. This contradicts the global null-controllability of the sys-
tem. u

REMARK 3.1. Note that if X, I/ are finite-dimensional, we can check
that the conditions (5) and (6) are equivalent and then for finite-
dimensional systems we derive the following global null-controllability
criterion,

COROLLARY 3.1. [1] Let dim X < +co, dim U < +cc. The system
(1) is globally null-controllable if and only if

(8) Yy* € By : /000 Hg (B*(s)@*.((], s)y*) ds = +o0.

Tt is worth to note that the condition (8) ¢an be formulated in terms
of the solution 1*(t) of the adjoint equation

(9) P t) = AT, t20.

Indeed, since Q)*Yl(t, 0) is the evolution operator of the adjoint system
(9) and
(0, 5)y™(0) = ¥ (s),

we can take the solution of (9) in the form ¥ (¢) = &* (£, 0}y with the
initial condition 1»*(0) = y3 # 0. We then obtain the null-controllability
criterion in terms of nontrivial solutions of the adjoint system (9) pre-
sented in [1, 17] as follows.
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COROLLARY 3.2. [L7] Assume that dim X < +o0 and dim U <
+o0. The system (1) is globally null-controliable if and only if

/0 A (B*(s)w*(s)) ds = o0,

for all nontrivial solutions ©¥*(t) of system (9).

Based on Lemma 2.3 and using the same arguments that used in
the proof of Theorem 3.1, the following discrete analog of Theorem
3.1, which gives a sufficient condition for the global null-controllability
of discrete-time control system (2}, is consequently derived.

THEOREM 3.2. The discrete-time control system (2) is globally null
controllable if
K1

Ye> 0,3 K>0v €XY: Y Hg(B*(i)\IJ*(K,i—&- 1)y*) > o T (K, Oyt
1=0

4. Complete stabilizability implies null-controllability

Consider system (1), where Q is a nonempty subset in 7. In [4]
it was shown that if the system (1), where A, B are constants and
Q = U; X, U are Hilbert spages, is null-controllable then the system is
exponentially stabilizable and the converse is, in general, not true. In
a stronger type of complete stabilizability, i.e., if for any o > 0 there
exist a linear bounded operator K : X — U and a number M > 0 such
that the generator Sk (t) of the system & = (A + BK )z satisfies the
condition

S ()| < Me™®*, ¥t =0,

it was proved in [7, 23] that the complete stabilizability implies exact
null controllability. In this section we extend these results to the time-
varying systems (1), (2) with constrained controls in Banach space U.

Let us first remark that if 4 is a constant operator, the evolution op-
erator ®(t,0) = S(t) is, as in [14, 22), the generator of the infinitesimal
operator A and has the following important property:

IN>0,3cR: ||S@)|| < Nefltl, vtcR.
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In time-varying case, it is, in general, not true and therefore, we shall
assume, throughout this section, that for every t,s > 0, the evolution
operator ®(t, s) generated by A(t) is a linear operator acting in X and
satisfies the following condition.

(A} 3N >0, 38€R: ||®(t,s) < Neflt=sl forallt,s > 0.

It is obvious that if A(¢) is uniformly bounded for all ¢ > 0, then
(1, 5) satisfies condition (A).

THEOREM 4.1. Assume the condition (A). If the system (1), where
X,U are Banach spaces, (2 is a convex compact subset of U, is com-
pletely stabilizable, then the system is globally null-controllable.

Proof. Let N > 0,8 € R be given numbers defined by the condition
{A) such that

{©7(0,8)]| = [|2(0,8){| < Ne®, t2>0.
For all y*: ||lv*|| = 1, we get
1= |[®*(0,£)®*(t,0)y*]| < |@*(0,8)]]|@"(t,0)y* ],
and hence

(10) < ||®8*(0,8)|| < Ne, vt > 0.

__
[ @*(¢, 0}yl

Taking any « > max{0,4}, by the complete stabilizability of system
(1), there exist a linear bounded operator function K (t) : X — Q¢ >
0, and M > 0 such that

@& (£, 0)| < Me™®, t>0,

where @k {t,s) is the evolution operator of system (1.1). For all * :
ly*|] = 1 we get the estimate

(11) 1% 0)y" < 2% (£ 0)l| = |2 (t,0)| < Me™** Vi =0
For the operator K (t) we consider the following linear differential sys-

e { £(t) = At)e(t) + BOK(B)z(), t30,
z{0) = zg.
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The solution of this system is defined either by

x(t, zg) = B(t, O)zo + / d(t, s)B(s)K (s)z(s) ds,
i
or by
z(t, zg) = ®x (2, 0)z0.

Therefore, we get

¢
B (t,0)z = {t,0)z0 +/ ®(t, 5)B(s)K(s)z(s) ds.
0
For every ¥~ € X*, we also get
< (1, 0)y*, zg > =< B (t,0)y", zo >
¢
+f < B*(sY®*(t, s)y™, K(s)x(s) > ds.
0
Since K{s)z(s) € {1, we have
t ¢
f < B*(8)®*(t, s)y*, K(s)z(s) > ds 5/ Ho(B*(5)®*(¢t,s)y") ds
0 0

and hence for every y* € X we also have

1

< @ (t, 0)y*, 2o ><< B7(¢,0)y", o > +f Ho(B*(s)@™(t,s)y") ds

0

or equivalently,
t
< B (t, 0)y*, —zg ><< B (2, 0)y", —z0 > -|—/ Ha(B*(s)®*(t,s)y™) ds.
a

Therefore, since xy is an arbitrary, we obtain the relation

(12)
1
< @*(t,0)y", x ><< O3 (¢,0)y", z > +f Ho(B*(s)®™(t,s)y") ds
)
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forall z € X, y* & X*.

We now assume to the contrary that the system (1) is not globally
null-controllable. By Theorem 3.1, there is a number ¢ > 0 and for any
sequence tg — +oo and yj € X™ such that

tx

(13) ) Ho(B*(s)®" (tr, s)ug) ds < | (tx, O)yi |-

From the above strict inequality it follows that y; # 0. Combining (12)
and (13) gives

< D™ (g, O)y, & > < < % bk, O)yg, & > +c||®" (¢, O)k ||,

for all z € X. Since yf # 0, the above estimate holds for all y; € BY.
On the other hand, since ||{®*(1x, 0)y; || # 0, we then get

<G > < < Frelte), x> +¢,

where

‘I’f((tk:o)yﬁ —% @*(tk,O)‘y,: c B*

Fr(ty) = =Bk Dk g k :
<) = et 0wl T o o] © O

Consequently,
< Yy — FK(tk),.?: >< ¢

for all z & X. Let us take a number @ > 0 such that ac = ¢ < 1. We
get
<G — Fre(te),y >< €,

for all y = ax € X. The above estimate holds for all ¥ € X, we then
get

(14) 77 — Fr ()]l < e

Let us set
Wi (k) = |7k — Fx (te)l]-
As remarked above, |§}|| = 1, then from (14) it follows that

(15) 1 - {|Fr ()l = il — 1 Fi (8)]| < Wi (k) <.
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On the other hand, since yf € Bf, taking (10), (11) and (15) into
account we finally obtain

1—e < [Pyt < Cet 9%,

where ¢ = NM. Since « > § as chosen before, letting £ — oo, the
right-hand side of the above inequality tends to 0, while the left-hand
side is 1 — € > 0, which leads to a contradiction. The theorem is
proved. O

REMARK 4.1. Note that Theorem 4.1 is an extension of a result of
[20] for finite-dimensional systems without constrained controls and of
[7, 21] for unconstrained control systems in a Hilbert space, where one
requires o € K.

We now consider the discrete-time control system (2). Let us make
the following assumption :

(B) AN >0, Ip>0: || U(k,d)| < NplF—*l for all £,4 > 0.

Note that the condition (B) holds if the operator A{k} is uniformly
bounded for all k£ € Z+.

THEOREM 4.2. Assume the condition (B). If the discrete-time sys-
tem (2), where X and U are Banach spaces and §! Is a convex compact
subset of U, is completely stabilizable, then the system is globally null-
controllable.

Proof. As in the proof of Theorem 4.1, for numbers N > 0, p > 0
given by the assumption (B), for every k € 7 * and for all y* & X* :
lly™ ]l =1, we get

1 .
< (|90, k)| = || (0, k)|| < Np”,

W o -

Let us take a number ¢ > 0 such that ¢ < min{1,1/p}. By the defini-
tion of the complete stabilizability of system (2), there exist a linear
operator Q(k) : X — Q. k € Z% and a number A > 0 such that for
every k € Z7 and for all y* € X* : [|y"|| = 1, we have

(17) 15 (5, 0" || < [0 (k. 0)]] = [[¥o(k, 0)l| < Md®,
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where U (k, ) is the transition operator of system (2.1). We now as-
sume to the contrary that the system (2) is not globally null-controllable.
By Theorem 3.2, there is a number ¢ > 0 such that for any sequence
ty — oo and yy € X such that

tp—1

> Ha(B* ()W (e, + Dyi) < <l ¥, 0)yill.
i=0

By the same arguments that used in the proof of Theorem 4.1, we will
arrive at the following estimate

(18) 1= [|Folte)] < &

where € < 1 and

Foltlh) = —————
o) = G e o Y

€ By.

Taking into {16), (17) and (18) into account, we obtain
1-—-¢< MN(gp)*.

Since € < 1, and 0 < ¢ < 1/p as choosen before, letting k& — oo we
again arrived at a contradiction, which completes the proof. 0

5. Conclusions

Global null-controllability of linear time-varying control systems with
constrained controls in Banach spaces was studied. New necessary
and sufficient conditions for global null-controllability of the systems
were established. We showed that complete stabilizability implies ex-
act global null-controllability for both continuous and discrete-time
systems with restrained controls. The obtained results can be con-
sidered as extensions of the results obtained earlier for linear time-
invariant control systems without constrained controls in finite dimen-
sional spaces.
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