Microstructure and Mechanical Properties of the Sn-Pb Solder Alloy with Dispersion of ${Cu_6}{Sn_5}$ and Cu

${Cu_6}{Sn_5}$ 및 Cu 분산에 따른 Sn-Pb 솔더합금의 미세구조와 기계적 성질

  • Lee, Gwang-Eung (Department of Metallurgical Engineering and Materials Science, Hongik University) ;
  • Choe, Jin-Won (Department of Metallurgical Engineering and Materials Science, Hongik University) ;
  • Lee, Yong-Ho (Department of Metallurgical Engineering and Materials Science, Hongik University) ;
  • O, Tae-Seong (Department of Metallurgical Engineering and Materials Science, Hongik University)
  • 이광응 (홍익대학교 공과대학 금속.재료공학과) ;
  • 최진원 (홍익대학교 공과대학 금속.재료공학과) ;
  • 이용호 (홍익대학교 공과대학 금속.재료공학과) ;
  • 오태성 (홍익대학교 공과대학 금속.재료공학과)
  • Published : 2000.11.01

Abstract

Microstructure and mechanical properties of the $Cu_6Sn_5$-dispersed 63Sn-37Pb solder alloy, for which $Cu_6Sn_5$ powders less than $1{\mu\textrm{m}}$ size were fabricated by mechanical alloying, were characterizde and compared with those of the Cu-dispersed solder alloy. Compared to the $Cu_6Sn_5$-dispersed solder alloy, large amount of $Cu_6Sn_5$ and fast growth of $Cu_6Sn_5$ were observed in the Cu-dispersed alloy. The $Cu_6Sn_5$-dispersed solder alloy exhibited lower yield strength, but higher ultimate tensile strength than those of the Cu-dispersed alloy. With dispersion of 1~9 vol% $Cu_6Sn_5$ and Cu, the yield strength increased from 23 MPa and to 40 MPa, respectively. The ultimate tensile strength increased from 34.7 MPa to 45.3 MPa and to 43.1 MPa with dispersion of 5 vol% $Cu_6Sn_5$ and Cu, respectively.

기계적 합금화 공정으로 제조한 $1{\mu\textrm{m}}$ 이하 크기의 $Cu_6Sn_5$를 63Sn-37Pb 솔더합금에 첨가하여, $Cu_6Sn_5$ 첨가분율에 따른 미세구조와 기계적 성질을 Cu를 첨가한 솔더합금과 비교하였다. $Cu_6Sn_5$를 첨가한 솔더합금에 비해 Cu를 첨가한 솔더합금에서 첨가분율에 따른 $Cu_6Sn_5$ 함량의 증가와 크기 성장의 정도가 더욱 현저하게 발생하였다. Cu를 첨가한 솔더합금에 비해 $Cu_6Sn_5$를 첨가한 솔더합금에서 항복강도의 향상 정도는 저하하였으나, 더 높은 최대인장강도를 얻을 수 있었다. 1~9 vol%의 $Cu_6Sn_5$를 첨가함에 따란 63Sn-37Pb 솔더합금의 항복강도가 23 MPa에서 36MPa 정도로 증가하였으며, 1~9vol%의 Cu 첨가시에는 항복강도가 40 MPa로 향상되었다. 각기 5 vol%의 $Cu_6Sn_5$와 Cu를 첨가함에 따라 63Sn-37Pb 솔더합금의 인장강도가 34.7 MPa에서 45.3MPa and to 43.1 MPa로 향상되었다.

Keywords

References

  1. J. Electron. Mater. v.28 S. Choi;T.R. Bieler;J.P. Lucas;K.N. Subramanian
  2. J. Electron. Mater. v.28 W.K. Choi;H.M. Lee
  3. J. Appl. Phys. v.86 A.S. Zuruki;C.H. Chiu;S.K. Laihiri
  4. Proc. Symp. Microelectronics J.H. Lau;S.W. Lee;C. Ouyang
  5. Proc. Conf. Electron. Comp. Technol. S. Wiesse;F. Feustel;S. Rzepka;E. Meusel
  6. J. Electron. Mater. v.26 R.C. Reno;M.J. Panunto;B.H. Piekarski
  7. Scripta Metall. v.25 H.S. Betrabet;S.M. McGee;J.K. McKinlay
  8. Proc. 41st Electronic Comp. Technol. Conf. J.L. Marshall;G. Kucey;J. Hwang
  9. Proc. Technical Program NEPCON West S.M.L. Sastry;T.C. Peng;R.J. Lederich;K.L. Jerina;C.G. Kuo
  10. Soldering & Surface Mounting Technol. v.26 J.L. Marshall;J. Calderon
  11. Metall. Trans. v.1 J.S. Benjamin
  12. Met. Trans. v.A16 R.O. Ritchie;A.W. Thompson
  13. Int. Met. Rev. v.19 D. Broek
  14. Int. Met. Rev. v.30 R. H. Van Stone;T.B. Cox;J.R. Low;J.A. Psioda