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A Nonlinear Analysis of Partial Discharge Signal
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Abstract - The partial discharge(PD) signal, may seems to be stochastic and merely random, was investigated using
the method to discern between chaos and random signal, e.g. correlation integral, Lyapunov characteristic exponents
and etc. For the purpose of obtaining experimental data, partial discharge detecting system via computer aided acoustic
sensor, detect PD signal from the insulating system, was used. While this method is very different from typical
statistical analysis from the point of view of a nonlinear analysis, it can provide better interpretable criterion according
to the time evolution with a degradation process in the same type insulating system.
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1. Introduction

For a long time, various computer-aided evaluation
methods of Partial Discharge phenomena have been
developed for the purpose of testing the reliability of HV
power equipment[1]. For the purpose of obtaining Partial
Discharge signal, Acoustic Emission(AE) system was used.
The advantages of AE
non-transparent

system are adaptability for
complicated electrode
arrangements, immunity for magnetic

interferences, and the possibility for real time observation

materials,
electrical

of tree propagation[2].

The data obtained from the AE system take the form of
a "time series”, which is to say, a series of values
sampled at unique interval[l]. If a time series has chaotic
characteristics, the system which generates the time series
can be considered as deterministic and nonlinear.
Conversely, the dynamical rule of the system can be
represented by the obtained time series.

There are two general criterion to discern chaotic signal

from merely random signal. The one is "qualitative
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information (topological characteristics)”, which is to say,
return(or Poincaré) map, strange attractors and correlation
integral etc, the other is “quantitative information
(dynamical characteristics)”, which is to say, Lyapunov
exponents, correlation dimension and Lyapunov dimension etc.

In this paper, to reveal the chaotic characteristics of PD
signal, PD data will be reconstructed in the phase space,
then Lyapunov dimension and correlation dimension of PD
signal will be determined. Detail process and notations
will be appear sequently in the following sections.

2. EXPERIMENTAL SETUP AND DATA PREPARATION

2. 1. Experimental Setup
Figure 1 illustrates the block diagram of the computer
aided PD detection system.
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Fig. 1 Biock diagram of the experimental devices

The basic elements of this system are specimen, AE
sensor, high-resolution digital oscilloscope, and personal
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computer. The specimen is fabricated to has needle-plane
electrode with XLPE. This specimen is the modeling of
local high electric field due to the protuberance of
semiconductive layer In power cable and the voltage of the
HV is fixed at 15KV. The AE sensor is used for
detecting PD signal in the treeing propagation and the
pre-amplifier is used for amplifying the PD signal. The
output frequency of the AE sensor takes from 400Khz to
1Mhz, and the resonant frequency is 600Khz. Therefore,
the pre-amplifier used in this paper has the resonance
frequency 600Khz. The signal detected from the AE sensor
is digitized by the oscilloscope and saved in the personal
computer through the interface card.

2. 2. Data Preparation : Peak Detection

The oscilloscope is set to sample the data at
7,=20Mhz, this rate is 20 times higher than the highest
output frequency of the sensor. Recall that the sampling
rate f, must be at least twice the highest frequency found
in the signal to prevent aliasing.

But, the time series obtained from each reading of the
oscilloscope is not proper to some of the data analysis by
itself, because it too many
Therefore, in this paper, each peak value of the reading of
the oscilloscope is used to make time series. So, the sampling

contains zero values.

time step of the each point in a time series( 4¢) is fixed at 1
second. Figure 2 shows an example of the time series.
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1000points out of 9800 obtained are displayed.
Fig. 2 An example of the time series
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3. NONLINEAR ANALYSIS OF THE DATA

3. 1. Phase-Space Reconstruction From a Time Series
Phase-space reconstruction was, for the first, suggested
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by Packard et. all3]. These authors conjectured that
phase-space pictures could be reconstructed from time
derivatives formed from the observation of a single
coordinate of any dissipative dynamical system. Another
method of
suggested

phase-space pictures reconstruction
independently by Takens[4] and improved
associated with the process of measurement by Broomhead
and Gregory[5]. The later method is known as the “delay
coordinate embedding” and will be used in this paper as a

was

tool to reconstruct trajectory in phase-space, which is to
say “attractor” that illustrates trajectory in phase space
following time evolution in dynamical system.

The basic idea of the reconstruction (embedding) is that
to specify the state of any dimensional system at given
time, therefore any independent quantities should be
sufficient to specify the state of the system. However,
unfortunately, in many cases the experimentalist has no
prior knowledge of how many dimensions would require,
nor the quantities appropriate to the construction of such a
phase-space.

Scalar time series, which is a result of measurement,
can be presented as follows;

x(t+1D)=x(¢t+ 48 (1)
From the set of

where, 4t is a sampling time step.

time series, vectors in dg dimensional space,

Xa=(x(9), x{(t+2),..., (x(t+(de—1) D),
X =1xD), 1+ ), ..., (1 +(dg—1) 7))
ie.
Xy=[x(2),x(2+ ),..., x(2+(de—1) 1))

Xp=[x(n),x(n+),....x(n+(dg—1) )] (2

are used to trace out the trajectory of the system. Where,
v is a delay time and dg is an embedding dimension,
respectively. The time equation (1),
projection of the state space of the system onto the one
Therefore, the purpose

series, are a
dimensional coordinate of the x(#).
of delay coordinate embedding is to unfold the projection
back to a phase space which is representative of the
original system[6]. Hence, a set of dr dimensional column
vectors X, represent points in the 4y dimensional phase
space and a trajectory is constructed by connecting these
same time, each row  vectors
{x(i+z)]i=1,2,...n} and etc. will
Figure 3(a) illustrates a schematic

points, at the
{x(H1i=1,2,...n},
build each coordinates.
diagram of making of 3-dimensional vectors from a time
series and reconstructed trajectory with 3-dimensional
vectors obtained by equation (2) is shown in figure 2(b).
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Fig. 3 Schematic diagram of trajectory reconstruction
from an observed time series
There are two

dimension dg

(embedding
r) for delay coordinate

important parameters
and delay time
embedding and further application. In practice, what
embedding dimension ¢ and delay time 7 to use in the
reconstruction are very sensitive problem and various
to determine dr [5-9] and <¢[10, 11] are

The method of determining 7,

methods

suggested elsewhere.
Mutual Information, will be discussed in the next section.
And, in this paper, for the purpose of economizing to
compute dy , and have no prior knowledge on dr , the
method which Kennell6] asserted “false nearest neighbors
method”, namely FNN method, was used for determining
de. At the beginning of embedding, to compare result at
with
the observed time

various embedding dimensions and delay times

environment,

(x(8) = Xmin)
(xmax—xmin) !

different experimental

series is normalized via x" ()= so that

0<x"(H=1.
3. 1. 1. Determining ¥ :Mutua! Information 7 (x(#, x(¢t+ 7))

embedded
are completely

time
times

For infinite and noise-free
with different
equivalent in their trajectory in principle. But for finite

series,
attractors delay
time series, different delay times in the reconstruction
process may contain different dynamical information[12].
If delay time is too small, x(# and x(t+:) are too
correlated and if delay time is too large, x(H and =x(¢+ )
are uncorrelated as completely random variables. Therefore,
an appropriate(or may be accurate) delay time is needed
for phase-space reconstruction. In other words, to choose
the appropriate delay time is that the coordinates x(# and
x(t+ )
so that they can be regarded as independent coordinates in

are independent but not completely uncorrelated
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reconstructed phase-space.

Various methods to determine appropriate delay time are
suggested independently[10, 11].  While the suggested
methods are very different from each other, from the
figure 1 in Ref(10]. It may be seen clearly that the mutual
information (namely, Nlog N ) method provides more
appropriate delay time values than the autocorrelation
method. Therefore, in this paper, the mutual information
method is used for choosing delay time. The major
concern which included in mutual information is that in
measuring how dependent the values of x(¢+ ) are on
the values of x(#), and at the same time each coordinate
in the reconstructed phase-space must be independent each
other. Therefore, taking the delay time which has the first
minimum in I as an appropriate
reasonably.

The two sets of reconstructed data with delay time r
will have the form {x(1i=1,2,...n},
{x(t+)1:=1,2,...n} and let them [s,ql=[x(8),x(t+ )],
then the mutual information between these two sets of
reconstructed data is(see Ref.[10] for more theoretical

can be accepted

notion),
I(S. Q) 2_1%{; F(R(](Ko)) — log z(No) (3)
where, KS,Q) is a function of the joint probability

distribution P,, . N,

observed in phase-space and F(Ry(K;)) is the recursive

is the total number of points

function determined as follows ;

F(Ru(Ku))=
N(R(Ku)log [ MR, (KuD1 ;
if there is no substructure in Rn.(Kn.)

MR A(K)Vlog o) + 3 M R (Ko, )

if there is substructure in R,(K,) (4)

Mutual information was applied for peak detected PD
data(Figure 2(b)), and then Figure 4 shows clearly that
the delay time could be determined at 2(2 second).
Because major concern included in mutual information is
making independent coordinates in phase space, taking 2

as appropriate T is resonable. In other words, the

x(9 x(t+7) of peak
detected PD data in phase space should be preserved at r

independency between and

bigger than 2.
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Fig. 4 Result graph of mutual information

3. 1. 2. Determining Embedding Dimension dg
: FNN Method

A false neighbor is a point in the data set appear to be
nearest neighbors because the embedding space is too
small. If one has taken a large enough embedding space,
all neighbors of every orbit point in the phase space will
be true neighbors. So, when the number of false nearest
neighbors drops to =zero, one can embed(unfold) the
attractor in R*.

In dg dimensions, the sth nearest neighbor of X, is
able to be denoted by X‘7; , then from equation (2), the
square of the Euclidean distance between the point X; and

X(r)‘_ iS
E% (i, = 'S;[x(i+kt)—x("(i+kr)]2 (5)

After the addition of the new coordinate, by delay time
embedding, the distance between X; and the 7th nearest

neighbor is

B +1(i,»

= R+ [x(i+ kdgt) — x7 (i + kdpD)]? (6)

Then, Kennell4] has asserted a natural criterion for
catching embedding errors using the increase in distance
between X, and X', is large when going from dimension

dg to deg+1. This criterion is determined as follows;

E e+ 104, N — E*de(i, ) 1™
Ezd[;(i. 7’)

> Er (7

where, Er is some threshold and Kennell4] has verified
that for Er=210 the false neighbors are clearly identified.

And, they advise this criterion should be used with next

criterion at the same time. The second criterion is

E, +1
'E—A'> Aqg (8)
Where, Ar is some threshold(usually takes A, = 2 [5])
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and E,4 is the size of attractor, respectively, determined as
following equation.

Ba=k En-% 3=k L am ©

Then, the percentage of false nearest neighbors is
computed as follows.

(number of FNN)
(number of point of the attractor)

PENN= x100{%] (10)

FNN method was applied for peak detected PD data.
Theoretically, if the number of FNN drops to zero the
time series can be embedded in R but in this paper the
criterion for the number of FNN set to 05 and then
Figure 5 shows that the embedding dimension could be
determined at 6(delay time r=2, as determined above).

414 004 001
A I

Dimension

Fig. 5 Result graph of FNN

3. 2. Lyapunov Exponents and Dimension

Lyapunov exponents denote the rate of divergence of
nearby trajectories. There are as many Lyapunov
exponents as there are dimensions in the phase-space of
the system, but the largest is usually the most important.
In other words, the largest Lyapunov exponent is the time
average logarithmic growth rate of the distance between
two nearby trajectories and the largest positive Lyapunov
indicate that the system is nonlinear and
Some different methods to obtain all of the
Lyapunov exponents were proposed independently in
Ref[13] and [14]. In this paper, the method out of
Ref.[13] is used for convenience of computing, individually.

Consider a small ball of radius & centered at the point
X; (j=1, 2, ..)on trajectory, and the set of points included
in this ball { X; }i=1, 2, ..). Then, the displacement vector

Y’ between X; and X is calculated as follows ;

exponents
chaotic.

{Y) = (Xjr‘_le 1X:— X;ll<e} (11)

where, 1 ... I denotes Euclidean norm. After the time

step T (=mst , m is an integer), X, and X, are

proceed to X, and X; , respectively. So, the

ftm



displacement vector { ¥’ } is mapped to

{(Z) = { Xjism=Xjum| 1 Xjiim— Xismlisel (12)

If the radius of ¢ is small enough Y’ and Z' can be
regarded as an approxXimation of tangent vectors in the
tangent space. Then, Z' can be represented using any
matrix A; by

Z=AY (13)

where, the matrix 4; is an approximation of the

Jacobian matrix. The squared error norm between Z' and

A;Y' can be minimized using least-square-error algorithm

minS= minlN ﬁl IlZ"—A,-Y"H2 (14)

and the matrix A; can be computed approximately as
follows (for Ny dg),

AV=C 2 A,=C(W"!

Mu=% S Vv (Ou=t T 247 (15)
N &= N &=,
Then, Lyapunov exponents are computed as,
1= tim B4l (16)

Then, from the Lyapunov spectrum, one of the fractal
dimension of attractor, which is called the Lyapunov
dimension, can be computed. The Lyapunov dimension is
defined as

Dy =i+ l’}l_ti a7n

where, ;j is the largest integer such that the sum ,Z:;"

of the Lyapunov exponents in the descending order is non
negativel[l5]. If the sum of the Lyapunov exponents is
positive, D; is defined as the same value with the
dimension of the state space.

Figure 6 shows the result of Lyapunov exponents
according to iteration at embedding dimension 6, delay
time 2(They were determined in the above section), initial
center point 100, initial radius of a ball 0.01, and time step
10. Where, from the result, the largest exponent was 1.08
+£0.0028 and the Lyapunov dimension was 6(equal to dg).
This result, the largest exponent 1) 0, shows that the PD

SEWH A8 bl MYH 84
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is originated from the deterministic
system.

chaotic dynamical
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Fig. 6 Lyapunov exponents according to iteration. 3
exponents, descending order, were plotted out
of 6 exponents

3. 3. Correlation Dimension

Correlation dimension D, is one of the non-integer
number of dimensions that characterizes the multifractal
structure of the chaotic attractor. D, can be evaluated
using the correlation integral C(¢), which is proposed by
Grassberger and Procacciall2, 16, 17).
length N in the embedding space R%, the correlation
integral can be computed as follows ;

For a trajectory of

- _ X
CMe)= NN 1,;-,;*,-9(6 I X~X: 1) (18)
where, &(X) is the Heaviside function defined by &(X)
=1Gf X=0); &X)=0(if X <0), X, is the center of a ball
has any radius & and X, is the set of points included in
the ball. Then, the correlation dimension D is given by

log Cp( &)

D.=lim li Toz (&)

&) N-oo

19

In practice, D, usually can be estimated by computing
the slope of the linear part of the plot of logCxe) versus
loge for increasing values of embedding dimension &z {or

delay time r ) using the least squares fit method as

follows.
li_:l log (&) log Cile;) ~ 12; log (&) :21 log Cile;)
1, log*(e) ~ (L, log (e)?

(20)

fa

Figure 7 shows that the correlation dimension could be
determined as 7 and 4. These results make clear that the
attractor constructed from PD signal has multi fractal
structures in phase space in that PD signal have

non-integer D, values.
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Table 1 Phase space states of various system and their Lyapunov spectrum

Class | Phase Space System Attractor | Dimension Lyapunov Spectrum Time Series
. ‘ 4
g‘ggctl \.‘J Equilibrium |One Point 0 A; <0 G=1, 2 .. n |
Limit Periodic Closed 1 A1=0
Cycle / Oscillation Curve A; <0 (=2, 3, ..., n)
Quasiperiodic A1= 4470
Doughnut @ Oscillation | Doughnut K A; <0 (=k+1, .., n)
. A; >0 (=1, .., m-1)
E&ﬁé%g, (w\/)\) Chaos Fractal |non-integer A m =0,
S A; <0 (i=m+l1, .., n)

T delay time=2

linear part slope=0,338

7/ de=10
linear ;
part slope=6.732 |

d

“bo S0 -6.0 A 4.0 30 0o 10
lag,( € )

(a) Result graph of the correlation integral. = was fixed at
2 and dy was changed from 1 to 10.

& -
- 6.0

-2 5.0-

deiay time =2

b
©
.

2.0

Correlation Dimen

2 5 4 &5 5 1 8

Embedding Dimension dg

{b) Graph of D. with different dz. Delay time tis fixed at 2

0
Embedding Dimenslon=6
+
w 4 linear part slope=3 602
= Delay time=1
L o A
=
=2
o]
) blay time=10
4 linearpart
-10 slope=3.629
12
3 Y = — ™ —
10 8 2 0

log, ey
{c) Result graph of the correlation integral. dr was fixed at
6 and v was changed from 1 to 10.
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(d) Graph of D¢ with different T .(d. is fixed at 6)

Fig. 7 Result graph of the correlation integral with
different delay time and embedding dimension

4. RESULT AND CONCLUSION
the chaotic characteristics of partial

discharge signal were investigated using the method which
discern between chaos and merely random signal.

In this paper,

The time series was obtained from the peak value of
one reading of the oscilloscope and the sampling time step
was fixed at 1 second. At the beginning of embedding,
the observed time series was normalized to have value
0<x"(H=1. Then, and embedding
dimension dg were determined using the method, namely
Mutual Information and FNN, respectively. The
normalized time reconstructed with the

the delay time r

series was
determined r and Dg. Then, the Lyapunov exponents and
Correlation dimension were computed using the
reconstructed trajectory.

The largest Lyapunov exponent was 1.08+0.0028 and
the correlation dimensions are considered 4 and 7(see
above result graphs in Figure 7). These results indicate
that the Partial Discharge 1is originated from the
deterministic chaotic dynamical system. In Table 1
various phase space states of system and their Lyapunov
spectrum were exemplified. If the largest Lyapunov

exponent shows a positive value(see Table 1), system



shows exponential orbital divergence that indicates system
with a small initial differences behave quite differently
with time - chaotic behavior. Therefore, one can easily
recognize form Table 1 and Table 2 that PD signal
havechaotic characteristics in that they have non-integer
positive Lyapunov exponents and correlation dimension
which mean multi-fractal structure in phase space. The
results of this paper are summarized in Table 2.

Table 2 Summary of the results

Parameter Values[unit] Sub Parameters
Time series -80 ~80[mV]{Sampiing time step=I[s]
Dealy time( z ) 2[sec]
Embedding L
dimension( d;) 6 Delay time=2
Delay time=2

Embedding dimension=6

1.08 £0.0028Initial center point=100

Radius of a ball =0.01

Time step=10

6 Delay time=2
Embedding dimension=6

r is fixed at 2

Dg is fixed at 6

The Largest A;

Lyapunov dimension( D)

Correlation dimension( D,)

Indeed, it is considered that these quantitative results
can be used as coefficients for the Neural Networks and

nonlinear predictors. With these

applications could be available such as life time predictor

using nonlinear prediction algorithm.
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