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Abstract: Recently we have shown based on Lyapunov
theoremn that the closed loop system with the constrained
infinite horizon H.. optimal controller is exponentially
stable. Moreover the on-line feedback implementation of
the constrained infinite horizon H.. optimal control based
on quadratic programs has been proposed. In this paper,
we summarize and discuss these results.

1. Introduction

Since Professor Kalman opened the era of modern
control with his powerful state space approach in the
earlv 60's, various different optimal control problems for
linear svstems has been addressed within  state
space framework. The first great success of state space
approach was the simple Riccati equation based solution
for the linear quadratic optimal regulation problem [10].
Although the main driving force for automatic control is
the existence

of disturbances, it was not explicitly

considered in  the optimal  regulation

problem. The existence of disturbances was first

linear quadratic

addressed in the linear quadaric Gaussian optimal control
problem where disturbances were assumed to be white
Again  solution of this obtained
through Riccati equations [11], [12], {17]. Due to the

noise. problem  was
remarkable success including the above results, the state
space theory has been predominantly studied and used in
control problems until Professor Zames [18] adopted the
input/output

framework that was prevail in  classical

control theory, and proposed .. optimal control problem
disturbances  are

where all the square integrable

considerd. The H,

different from the previously addressed optimal control

optimal control problem was quite

problems since it was formulated within the input/output
framework. Hence the solution of the . optimal control

problem was initially sought within the operator theoretic
framework. However, the resulting solution techniques
were rather complicated compared to the Riccati equation
based solution techniges for linear quadratic regulation
quadratic 1988,
combining both state space theoretic and input/output
theoretic tools, Dovle, Glover, Khargonekar, and Francis

and linear Gaussian  problems.  In

[8] proposed a complete Riccati equation based solution
technique for the H,, optimal control problem.

Constraints are alwavs present in any practical control
problems. For instance, the physical restriction of the
actuator hmits the value the input can assume. Moreover
due to safety, environmental regulation and so on, the
states of the plant are desired to lie within a designated
area in the state space. Under the presence of these
constraints, the closed loop system becomes nonlinear
and the current Riccati equation hased solution techniques
for lnear optimal control problmes are no longer valid.
However due to the difficulty caused by the nonlinearity,
the constrained infinite horizon linear optimal  control
problems  remained unsolved up  to recently. Asan
alternative to constrained infinite  horizon lincar  optimal
control, model predictive control - was widely used  and
studied [71, [15], 1131, [14), 131 In predictive
control, constrained {inite horizon linear optimal  control

maodel

problem is solved at every time instant and the first
control is implemented. In 1987, Sznaler and Damborg
[16] pioneered the arca of constrained infinite horizon
linear quadratic regulation. Indeed, based on the fact that
the constrained infinite horizon linear quadratic optimal
control problem can be reduced to a finite dimensional
quadratic program, they proposed a solution strategy
based on a set of guadratic programs and implemented it
in receding horizon fashion. In 1996, Chmielewski and
provided 4

NManousiouthakis — [6] computationally  less
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demanding technique where only a linear program is
required to find a finite dimensional quadratic program
equivalent to the constrained infinite horizon linear
quadratic optimal control problem. Recently, Choi and Lee
[4] established the exponential stability properties of the
mixed constrained linear quadratic optimal control based
on the Lyapunov theory. Then, based on the exponential
envelop associated with the exponential stability, it was
shown that the constrained infinite horizon linear
quadratic optimal control problem can be reduced to a
finite dimensional quadratic program without on-line
optimization. More recently, Choi and Lee [5] also
established the exponential stability properties and a
feedback implementation technique for constrained infinite
horizon H.. optimal control. In this paper, the core
results and the associated underlying principles in Choi
and Lee [5] are presented.

2. Preliminaries

2.1 H- Optimal Control

In this section, we briefly summarize some standard
results in H., optimal control as exposed in {17, [2].

Consider the system

ka:Axk-f' Buk-f- de, (1)
Y= Cxyt ny,
is the

where x,=R" is the state vector; u,= R™

manipulated input: d, R’ is the unknown disturbance;
weR' s the output; n,€ R? is the measurement noise.
Throughout the paper, the system is assumed to be
stabilizable and detectable.

Assumption 2.1: (A,B) and (C,A)

and detectable pairs, respectively.

are stabilizable

Associated with the linear system (1), consider the
H., optimal control problem [1}:

J.(x0) = min ,max ,/{ 2 Xk Qupt 2 wiug— 7 ;“dl‘dk]

subject to (1) where @>0 . @>0 is assumed throughout
the paper. Using %D instead of D, we can assume

y=1 . We adopt this assumption throughout the paper.

The H. optimal control problem admits the feedback
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but not necessarily saddle point solution as follows.

Theorem 2.2¢ Suppose the generalized algebraic Riccati
equation:

M=Q+A™MA A
where

A=I+(BB"—y*DDNM

admits a positive semi-definite solution M satisfying

71— DM D>0.
(1) There exists a minimal positive definite solution M.

(i) the corresponding cost function is

jzl(x()) = xOTMO

(iii) The controller
uy =— B "MA "'Ax,=: — Fx,
and the corresponding maximizing disturbance
di =D"MA 'Ax,=:Lx,
results in

- *
xp =N Axf.

2.2 Maximal Output Admissible Set
We now summarize some results of maximal output

admissible sets as exposed in [9],

It is assumed that the control of the system are desired
to satisfy the following inequalities:
uminsukgumax,

k:O’ 1,

Also, throughout the paper, the following conditions are
assumed to hold for the well posedness of the problem:

Assumption 2.2
Oe int{vE Rm’ u mi“évéu max}.

Note that this condition implies 2 min <0< ™,

The maximal output admissible set is defined by

Oui ={x€ R" | (A~ BF+ DL)*x= A'xe v, k20 )




w MopEAL 780t Ho A9 (])

where
YV ={xe R" | u™< —Fx<u™ }.

Theorem 2.2: Suppose the following assumptions hold:
i) A— BF+ DL is exponentially stable, ii) Y is bounded,
iii} 0=intY, Then there exists ¢ such that

Opn={xe R" | u™< ~F(A— BF+DLYx<u™, 0<k<{" }.

3. Main Results

3.1 Exponential Stability
Consider the following constrained H, optimal control

problem:

R T
J( x,)=min uma-xd{ ]bek+/1kQ X bt fk

[es] jee)
T T
+ ;ukmk Ukt o™ jz‘bdk+ﬂk dk+/|le]

subject to

Xptjo k=A% ot B o jpt Dd i jp, Xme= xp, (2
U min = uk-#/]!eS U max -

We assume the desired attenuation level is achieved.

Assumption 3.1: J0)<0. However, 7 is not the infimal
performance level such that J(0)<0.

Since O. contains a neighborhood of the origin, the
constrained H. optimal control in this neighborhood is

linear and, thus, is exponentially stable. In [5], Choi and
Lee established that, for stable plant, the closed-loop
system is globally exponentially stable. Indeed they
showed that there exist a, b, ¢>0 such that

al x| *<Hx)<b| xx 2,

A(x) =K xpe) = Kxp)< — ¢ | x| 2

‘V’xkE Rn,

kae R,

Hence, we have the following theorem.

Theorem 3.1: Under Assumption 3.1, the closed-loop
system with a stable plant and the constrained He
optimal controller is globally exponentially stable.

3.2 Feedback Implementation

If the solution of the constrained He optimal control
problem exists, the optimal control must converge to zero
as j—o© because of —é ;uiﬁk “p e in the cost

function. Now consider the following truncated constrained

H , optimal control problem:

oo
R T
Jn(x,) = min umaxd{ ,Z()x bt 4k Q Xkt ik

+ JZ‘buL;lk Ut jo™ ]Zodiﬁﬂk dk+ﬂk} (Py)

subject to (2),

umins uk+/1k£ U max » OSJSN_I

Since the optimal control of the constrained Ho. optimal
control problem converges to zero, there exists N such
that the constraints are not active for all j=N and,

thus, (P) and (Py) are equivalent.

In the closed loop information pattern, it is clear that

i
L 7 "
Ja(xy) = min , , max u'\{x e e M X et 2]-’5 IS TIA N S

N N
+ ﬁ)ul/\w e - jh T :)dﬁ,. Ak d/uﬂk]
subject to (2),

uming uk+ﬂl€S U max OSjSN—]--

To find the solution of this problem in closed loop
information pattern, the dynamic programming needs to
be employed. However, the solution of this constrained
dynamic game problem by dynamic programming 18
computationally very involved. Hence for feedback
implementation, the open loop solution will be sought
instead as follows.

As shown in [2], the above dvnamic gamce problem
results in the same feedbuack solution for both open and
closed loop information pattern if it admits the unique
open loop and the unique closed loop saddle point
solutions. The necessary and sufficient condition for the
existence for the unique open loop saddle point solution
is as follows.

Lemma 4.1: For the linear-quadratic two-person zero—sum
dynamic game, introduced above, the objective functional
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is strictly concave in d if and only if
I- DT S,;.,D>0
where S; is given by

S,=Q+ AT S;,, A
+ AT S]'JrlD[I” DT S]'JrlD] ‘_IDT S,‘+1A,
SN:M.

Since the maximization problem in [y is unconstrained,

we have the closed form solution to the problem in open
loop information pattern.

Fact 4.1 [2}: Under the assumption for Lemma 4.1, the
maximization problem in (Py) admits the unique solution:

diiyn=P; S; 1A xe.ut Pl S;\ 1B ugju— vl
i=[0,N—1]
where
P=[I-D"S;, DI 'D”
S=@+ A" S;\[I+D P, S;,,]1A, Sy=M

v;,= A7[ I+ D P, S]u,l]T[ Viv1— S)'+| B uk*’ﬂ/e]; y“.\,:()

Furthermore, the optimal cost of the maximization of
(P ) is

T T
X weSo X me— 2% eV — 2 Qo
where

Ao
T T . r
Z)[—MMMB SitiB uie = (S Bgrw— viiy)

=
i
Do )»—

P,IDT( S,'” B Upy b ™ Uj‘])+2u1‘4,1k BT v, ]].
Using the above fact, we obtain
. ol T
Jn( x¢) =min 11\{ Elukwk U ot Ak
L xSy -
9 X ke D0 Xpe™ Xppt Vo qo
subject to

vi=A"1I1+D P S, 1"l 01— Sjs1 B wsepil.

0<j<N—-1.

U= 0,

U i = U py M‘S U max

To this end (Py) can be transformed into a quadratic

programming problem.

We now summarize the feedback implementation.

Off -line Computation:

TIUYIX X492 9F 200012 of)
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1. Compute O. as proposed in [9].
On-line Computation:

1. If x=0., implement u,=— Kx,.
2. Choose N and solve Ja{x,).
3. If x%sms€ Ow, implement the first control input.

Otherwise, increase N and go to Step 2.

Before we close this section, a couple of remarks are
in order.

For unconstrained problem, the existence condition for
closed loop solution is strictly weaker than that for open
loop solution in Lemma 4.1. However, the existence
condition for closed loop solution of constrained problem
is unknown but stronger than that of unconstrained
problem, Hence it 1s not clear which one is stronger or
no one of them is stronger than the other.

Clearly the above implementation is possible whenever
the open loop solution exists. However, the stability
analyvsis in the previous subsection holds on the region
where both open and closed loop solutions exist. Hence
unless the existence condition of the closed loop solution
is stronger than that of the open loop solution, the region
of stability is reduced. Nevertheless the local exponential
stability properties in the previous subsection still hold
true hecause the open solution is not necessary in  Oew.
However, the global exponential stability for stable plants
fails to hold in any meaningful cases. As N increases,
the condition in Lemma 4.1 becomes stronger and
stronger and the set of states for which the open loop
solution exists shrinks. Indeed, as M—oo, the condition in
Lemma 1.1 requires that the open loop plant satisfv the
desired  I7. performance level without control and thus

the 11 optimal control be unnecessary. Hence if this

requirement is not satisfied, N cannot increase over a
certain value. To this end for stable plants, the global
exponential stability of the closed loop system will not
be attamed if the open loop plant doesn’t satisfy the
desired H. performance level.

4. Conclusions

In this paper, we have summarized and discussed the

recently developed constrained H. optimal control

theory [5]. The exponential stability properties and the
feedback implementation based on quadratic programs
have been presented. The application of these results is
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mainly limited by the on-line computation time for the
quadratic programs. Indeed it is only applicable to very
slow processes such as chemical processes. Hence it is
necessary to develop an implementation technique to
reduce on-line computation time. Further theoretical
development of stability regions for marginal and/or
unstable plants and the closed loop solution existence
condition for the constrained problem is desirable as well.
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