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Properties of optical extended fractional Fourier transforms
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Introducing left and right fractional orders separately, we show that the cascading of optical
extended fractional Fourier transform systems can be easily calculated. Through such calculations

we study the properties of extended fractional Fourier transforms.
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I. INTRODUCTION

The fractional Fourier transform (FRT) of order 1/N
means that, if it is applied to a function consecutively
N times, the resulting output becomes the ordinary
Fourier transform of the function. The FRT was first
proposed by Namias [1] and was developed mathemat-
ically by McBride and Kerr [2]. Recently, the FRT
was rediscovered by Mendlovic and Ozaktas [3,4] and
Lohmann [5]. They showed that the FRT can be imple-
mented optically with lenses. Their works stimulated
studies on optical FRT and many research results were
reported [6-14]. More recently, Hua et al. generalized
the idea of FRTs further to extended FRTs (EFRTSs)
[12,13].

The EFRT of order p of a function g(z;) denoted by
G(z2) is defined as [13]
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where j = /=1, the angle ¢, = pr/2, and a and
b are magnification parameters. The operation of Eq.
(1) with three parameters a, b, and ¢, can be imple-
mented by controlling the distances d; and d,, and fo-
cal length f (or A), as shown in Fig. 1. From Fresnel
diffraction theory, the relation between the input and
the output of the system shown in Fig. 1 can be ex-
pressed as Eq. (1). In this case, the three parameters
a, b, and ¢, become complicated functions of d;, d,
and f [13]. Thus it is difficult to understand the cas-
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FIG. 1. Optical EFRT system by use of a lens.

cacing properties of EFRT systems in detail.

In this paper, we define new parameters, i.e., left
and right fractional orders instead of @ and b. With the
two fractional orders, the cascading of EFRT systems
car. be easily calculated. Through such calculations we
study the properties of EFRTs.

II. LEFT AND RIGHT FRACTIONALITY
ORDERS IN EFRTS

If the ABCD matrix of a lens system without loss is
given, the Fresnel diffraction in the system is described
by [11]

S 2 2 _
G(xs) = / g(z1) exp (J;Awl + ng 2z1x2) dzy
()

where an unessential constant in front of the integral
has been omitted, and AD — BC = 1. The ABCD
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matrix of the system shown in Fig. 1 is given by

A Bl _[1-% d+d. -4
EFIR

where the left and right fractional orders | and r are
defined by the following two equations:

d d d,
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i cos ¢y I From Eqgs. (2)-(4), we can express the EFRT as
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Comparing Eq. (1) with Eq. (5), we obtain the | where sin ¢, is assumed to be positive. If cos¢; =

following relations between the two parameter sets

{a.b.¢p} and {¢y, ¢, f}:

cos ¢y = 2 oS ¢Pp, (6)

COS ¢y = % €08 Pp, (7)
1 .

o absin ¢,. (8)

From Eqs. (6) and (7), we can see the conventional
meaning of the fractionality of order p in the EFRT,
ie.,

cos? ¢, = cos ¢y cos . (9)

Like conventional FRTs, the scale factor f; of the
EFRT is defined as

fo=fsing, = f/1~ cos i cos ¢,

(10)

cos ¢r = cos ¢p, we can see that Eq. (5) becomes an
expression of the conventional optical FRT [3-5].

III. CASCADING OF OPTICAL EFRT
SYSTEMS

III. A. Parameters of the cascaded system

One advantage of expressing the EFRT as Eq. (5)
with {¢;, ¢, f} is that the parameters of the cascaded
system are easily calculated by multiplying the ABCD
matrices of the component EFRT systems. Suppose
two EFRT systems are cascaded as shown in Fig. 2(a).
And let us make the parameters of the first and second
systems be distinguishable by attaching the subscript
1 and 2 to them, respectively. Then, the ABCD matrix
of the whole system in Fig. 2(a) becomes

cos@, f(l—cosey cosm] _ [Cosrﬁm
- 1

-7 cos ¢y ~%

dll dn dlz
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dr,
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FIG. 2. Cascading of two EFRT systems. (a) General
case. (b) Two systems are mutually mirror-symmetric.

dn dn

J2(1 — cos ¢y, cos ¢,z)] [cos Or,
X 1

Cos ¢,

f1(1 — cos ¢y, cos @y,)
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R

From Eq. (11), the resulting three parameters of the
cascaded system are

ﬁ(l — €OS ¢y, COS @y, )

f2
b1 by

= COS ¢, COS Pp, — o sin @p, sin ¢p,, (12)
a1G2 fsz
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COS @r = COS Py, COS Py — %(1 — COS ¢y, COS Py, )
1
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1_cosén , cosdr, 14
f fe h (14

Because cos ¢; and cos ¢, in Eq. (12) and (13) are not
equal, in general, we can see that, when two EFRT
systems with arbitrary parameter values are cascaded,
the whole system becomes another EFRT system.
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For simplicity, let us express Eq. (5) as
Glz2) = FiMg(z1)] = F{}lg(@)]. (15)

It
Of course, Fyl'[g(z1)] = Filg(@1)] = Fisngpl9(@1)]
means a conventional FRT. Then, the transform of the
cascaded system shown in Fig. 2(a) is represented by

Glzs) = FRlFi [g(21)) = F}'[g(a1)]  (16)

where [, 7, and f are determined according to Eq. (12)-
(14), or Eq. (11).

III. B. Additivity of the fractional orders

By equating cos ¢, calculated directly from Eq. (9),
(12), and (13) to cos(¢p, + ¢p,) = COSPp, COS Pp, —
sin @y, sin ¢y, , we can obtain the condition under which
the additivity is satisfied. When f5, = fs, [or, a1by =
asby from Eq. (8) and (10)], the condition becomes

aijas = byby or cos ¢y, cos ¢y, = €08 dp, COSPr,. (17) |

Unlike conventional FRTs, we can see that the addi-
tivity of the fractional orders are not satisfied (i.e.,
p # p1 + p2) in general, even if fo, = fs,.

As a special case, if cos¢;, = cosér, (or, a1 = by),
in other words, the first system is a conventional FRT
system, Eq. (17) tells us that the second system
should be also a conventional FRT system because
cos ¢y, = cos ¢y, (or, az = bz). When the systems of
conventional FRT are cascaded, the additivity of frac-
tional orders are satisfied if f;, = fs, [9]. In addition,
the value of f, does not change, i.e., fs = fo; = fs,-

Let us consider another special case when Eq. (17)
is satisfied, for example, when cos¢;, = cos¢,, and
cos ¢, = cos¢y,. Additional condition f;, = f,, im-
plies that f; = fo from Eq. (10). This is the case
when the two EFRT systems to be cascaded are mu-
tually mirror-symmetric as shown in Fig. 2(b). From
Eq. (9), we see that cos¢p,, = cos¢y,. The ABCD
matrix of the cascaded system in Eq. {11) becomes,
from Eq. (12) and (13),

A B _ 2COS¢[1 COS¢7‘1 ~1 2f1(1 - COS¢I1 COS¢T1)COS¢I1 18
C D~ —% 2 cos ¢y, cos dr, — 1 ' (18)
Because A = D, the cascaded system becomes a con-
ventional FRT system. Thus Eq. (18) can be rewritten
as
cosgp fesingp) _ cos(2¢p, ) 2fs, sin ¢, cos ¢i, 9)
_sn}:ﬁe cos d’p == __2sm ¢Pl cos ¢,] COS(2¢p1) .

From Eq. (19), we can see that ¢, = 2¢p, = 2¢p,. Iiwhere the orders I, » and f are determined by Eqs

However, the scale factor of the cascaded system is
different from that of the component systems (f, #
fs; = fs,), because

cos ¢y, [ cos ¢r,
= fop4| ——- 2
oS P, f cos ¢y, (20)

III. C. Conversion between extended and
conventional FRT systems by their cascading

.fs = f31

If two conventional FRT systems whose scale factors
are different (i.e., fs, # fs,) are cascaded, the resulting
system becomes an EFRT system in general. This is
because cos@; # cos¢, if fs; # fs, from Egs. (12)
and (13) even though a; = b, and az = b2. So we can
express this fact simply as

Fr2F le(@)) = Fllg(@)] (21)
Fo O FE le@) = Flg(n)] (22)

(12). (13), and (14), respectively.

On the contrary, let us consider the general condition
under which two EFRT systems become a conventional
FRT system when they are cascaded. This condition
is obtained easily by equating Eq. (12) to Eq. (13).
And from Eq. (4), we get

_ h+h
dy, +dr,

s ) 1 J=h-f @

under which the following property is satisfied:

FrlF (@) = Flg(en)] = 7, la@)] - (24)

2

where the parameter values are also determined by
Egs. (12)-(14).

Especially when f; = f2, there are two possible cases
that satisfy the condition given in Eq. (23). One is
the case when d;, = d,, i.e., cos ¢, = cos ¢, = C0s da,
regardless of d., and dj,. We can express this as

FelrFg(a1)] = FYy o)) 2)
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where cos ¢, = €0S ¢ (OS¢, +COS ¢y, )—1,and 1/ f; =
(cos ¢r, + cos¢y,)/ fsing, from Eqs. (12)-(14). The
other is the case when f, + fo = d;, +dy,, i.e., cos @,, +
cos ¢, = 0, regardless of d;, and d,,. This means that
p =2 and f = oo in the cascaded system.

IV. CONCLUSION

In conclusion, we showed that the cascading of
EFRT systems can be easily calculated by adopting ¢,
and ¢, parameters. We obtained the condition under
which the additivity of the fractional orders is satisfied
in EFRTs when the scale factors of the two systems
are the same. One interesting case when the additiv-
ity is satisfied is that the two systems to be cascaded
are mirror-symmetric. The resulting system becomes a
conventional FRT system in this case. Unlike the con-
ventional FRT, even if the additivity is satisfied, the
scale factor of the cascaded system is different from
that of the component systems. When two conven-
tional FRT systems whose scale factors are different
are cascaded, we showed that the resulting system be-
comes an EFRT system, and obtained the left and right
fractional orders of the cascaded system. Conversely,
we also obtained the general condition under which
two EFRT systems, when they are cascaded, become
a conventional FRT system.
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