Fabrication of Fiber-Reinforced Composites by High Pressure Self-Combustion Sintering Method

고압 자전연소 소결법을 이용한 섬유강화 복합체의 제조

  • 방환철 (경남대학교 대학원 재료공학과) ;
  • 고철호 (경남대학교 대학원 재료공학과) ;
  • 임동원 (경남대학교 대학원 재료공학과) ;
  • 김봉섭 (경남대학교 대학원 재료공학과) ;
  • 최태현 (대구공업대학교 세라믹공학과) ;
  • 윤존도 (경남대학교 대학원 재료공학과)
  • Published : 2000.05.01

Abstract

Dense composites of titanium matrix and Al2O3 matrix with reinforcements of carbon or titanium carbide fibers were successfully fabricated by high-pressure self-combustion sintering method or combustion reacton under 30 MPa of uniaxial pressure with an aid of external heating in vaccum. It was found that the fibers were uniformly distributed in the matrix, and aligned in a phase perpendicular to the pressure axis. As a moel ratio of Ti/C or reaction time increased, the density of Ti-matrix composite increased Micro pores around fibers could be removed by using clean carbon fibers without sizing agent on their surface. The evolution of carbide fibers from carbon fibers was observed. The composition of the various phases around fibers were analyzed.

Keywords

References

  1. Ceram. Bull. v.79 no.2 Combustion Synthesis: Historical Perspective V. Hlavacek
  2. Ceram. Eng. Sci. Proc. v.11 no.9-10 A Historical and Technological Perspective on SHS J. W. McCauley
  3. Am. Ceram. Soc. Bull. v.72 no.12 The Economics of Advanced Self-Propagating High-Temperature Synthesis Materials Fabrication K. A. Golubjatnikov;G. C. Stangle;R. M. Spriggs
  4. 요업기술 v.10 no.2 SHS 공정의 기술현황 한유동;송인혁
  5. 연소합성의 화학 연소합성 연구회(편);이희철(역)
  6. J. Mater. Sci. v.28 Thermite Reactions: Their Utilization in the Synthesis and Processing of Materials L. L. Wang;Z. A. Munir;Y. M. Maximov
  7. J. Mater. Sci. v.21 Combustion Synthesis of Titanium Carbide: Theory and Experiment J. Holt;Z. Munir
  8. Am. Ceram. Soc. Bull. v.69 no.4 New Ceramic Processing Approaches Using Combustion Synthesis under Gas Pressure Y. Miyamoto
  9. J. Am. Ceram. Soc. v.73 no.5 Microstructural Properties of Consolidated Titanium Boride and Titanium Carbide L. J. Kecskes;T. Kottke;A. Niiler
  10. J. Am. Ceram. Soc. v.73 no.2 Dynamic Compaction of Combustion-Synthesized Hafnium Carbide L. J. Kecskes;R. F. Benck;P. H. Netherwood
  11. Ceram. Eng. Sci. Proc. v.11 no.9-10 Assessment of the Application of SPS and Related Reaction Processing to Produce Dense Ceramics R. R. Rice
  12. J. Mater. Sci. v.27 Self-Propagating High-Temperature Synthesis J. Subrahmanyam;M. Vijayakumar
  13. Am. Ceram. Soc. Bull. v.64 no.2 High Pressure Self-Combustion Sintering of Silicon Carbide O. Yamada;Y. Mitamoto;M. Koizumi
  14. J. Mater. Res. v.4 no.2 The Effect of Carbon Morphology on the Combustion Synthesis of Titanium Carbide M. E. Mullins;E. Riley
  15. Metall. Trans. A v.23A Fabrication of Metal Matrix Composites of TiC-Al through Self-Propagating Synthesis Reaction Y. Choi;M. E. Mullins;K. Wijayatilleke;J. K. Lee
  16. 한국 세라믹 학회지 v.37 no.4 자전연소합성반응중 속빈 TiC 섬유의 형성기구 윤존도;방환철
  17. 한국 재료 학회지 v.10 no.5 자전연소합성법에 의한 여러가지 섬유상 및 입상 탄화물의 제조 방환철;윤존도
  18. Kor. J. Ceram. Soc. (International Edition) v.4 no.3 Preparation of Titanium Carbide Fiber-Reinforced Alumina-Ceramic Matrix Composites by Self-Propagating High-Temperature Synthesis J. Yun;H. Bang
  19. Fracture of Brittle Solids B. Lawn
  20. Materials Properties Handbook: Titanium Alloys ASM International