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ABSTRACT

Numerical methods are developed for calculating the natural frequencies and mode shapes of the tapered
cantilever arches with variable curvature. The differential equations governing the free vibrations of such
arches are derived and solved numerically, in which the effect of rotatory inertia is included. The parabolic
shape is chosen as the arch with variable curvature while both the prime and quadratic arched members
are considered as the tapered arch. Comparisons the natural frequencies between this study and finite
element method SAP 90 serve to validate the numerical method developed herein. The lowest four natural
frequencies are reported as a function of four non-dimensional system parameters. The effects of both the
rotatory inertia and cross-sectional shape are reported. Also. the typical mode shapes of stress resultants as
well as the displacements are reported.
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1. Introduction

Since arches are the basic structural forms, these
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units are widely used in the various engineering fields.
Studies on the free vibrations of linearly elastic arches
have been reported for more than three decades. Such
reviewed by Laura and

studies were critically

Maurizi'"’, Background material for the current study
was summarized by Oh. et al?, Briefly. such works
included studies of non-circular arches with predictions
of the lowest frequency in flexure by Romanelli and
' and in extension by Wang'", and Wang and

) . 6
': Lee and Wilson'®

B
Laura

Moore"” studied the free vibrations
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of uniform arches with variable curvature in flexure.

For  tapered arches, Roysterm computed  the
fundamental extensional frequencies of tapered circular
arches: Wang(‘“ computed the fundamental frequencies
of parabolic arches with variable width and depth:
Laura and Verniere calculated the fundamental
frequencies of circular arches with thickness varying in
a discontinuous fashions, In the works just cited, the
Rayleigh-Ritz method was used. Sakiyama'” and

(10) .
. presented another approximate

Wilson, et al
methods for analyzing the free vibrations of arches
with variable cross-section. Studies showing the effect
of rotatory inertia on free vibrations were investigated
by Irie, et al.'""’, Lee and Wilson'”. and Oh. et al.'”.

The main purpose of this paper is to present both
the {fundamental and some higher free vibration
frequencies for the linearly elastic tapered cantilever
arches with variable curvature, in which the rotatory
inertia is included. The differential equations are
derived In polar co-ordinates system and solved
numerically. Theories and numerical methods adopted
herein have the advantage of such that both the
frequencies and mode shapes should be obtained
without the assumption of eigenfunctions. The parabolic
shape is chosen as the arch with variable curvature
while both the prime and quadratic arched members
are considered as the tapered arch. In the most
previous works, the most end constraints of the arches
are clamped-clamped, hinged-hinged and clamped-
hinged. However, the numerical results concerning the
cantilever arches are very rare even though its
numerical data are very important when these units
are used as the substructures such as the porch frames
in large buildings. From this viewpoint, the clamped-
free ends, namely cantilever arch, are chosen as the
end constraints in this study. The lowest four natural
frequencies are presented. and both the effects of
rotatory inertia and cross-sectional shape on the natural
frequencies are reported. In addition. the mode shapes
of stress resultants as well as the deflected shapes of
arch axes are illustrated.

2. Mathematical Model

The geometry and variables of an arch considered in
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Fig. 1 Geometry of arch and its defining variables

this study are shown in Fig. 1. The shape of arch
with variable curvature is y=(x) in the Cartesian
co-ordinates, which is supported by the clamped-free
ends, namely cantilever arch. Its chord length, span
length and rise are depicted as L, ! and H,
respectively, At any point of arch (x, v). the area,
area moment of inertia and arc length are depicted as

A, I and s, respectively. The A, I and s values at
free end are Ay, I; and s; respectively, and the 7
value at clamped end is 7. The radius of curvature is
depicted as # and its inclination with x-axis is ¢. Also
the vertical and tangential displacements, and rotation
of cross-section are depicted as w, v and ¢,
respectively.

In this study. the shape of parabolic is chosen as the
arch with variable curvature. Its shape is expressed in
terms of (L, H) and the co-ordinate x in the range
from x=0 to x=/ That is,

y= —H/L)x(x— L), 0<x<! (1)
The quantities A and [ are expressed in the form

where both F=F(s) and G= G(s) are the functions
of single variable s, as discussed in section 3.

A small element of the arch shown in Fig, 2 defines
the positive directions for its loads: the axial load N:
the shear force @ the bending moment M: the radial
inertia force P,: the tangential inertia force P,: and

rotatory inertia couple T. With inertia forces and the
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Fig. 2 Loads on a small arch element

inertia couple treated as equivalent static quantities. the
three equations for “"dynamic equilibrium”™ of the

element are

dN/dgp+ Q-+ »P,=10 4)
dQ/de¢— N+ vP,=0 (5)
r 'dM/dp—Q— T=10 (6)

The equations N, M and ¢ that relate to the
displacements w and » account for the axial
deformation due to N. These equations. given by Borg

12)

and Gennaro'"”, are
N =E[Ar"" (v +w+1r *(w +w)
=E[AFr "o+ )+ I, Gr (w” + w))
M= —EIr qw ' +w=—ELGr *(w” +w (8)
¢ =7r"(w —v (9)

(7)

where each prime is one derivative with respect to ¢
and £ is Young's modulus.

The arch is assumed to be in harmonic motion, or
each co-ordinate is proportional to sin(w#) where w is
the frequency parameter and ¢ is time. The inertia
loadings per unit arc length are then

P, = vAd*w
= yA]szw o
P[ ‘_'YA(UZU’) (11)
= yAFw'v
_ 2
T =rley (12)

yL;Go’r Nw —v)

where 7 is mass density of arch material and

YA=7vA/F is mass per unit arc length at any point

of arch.
When Egs. (8) and (12) are substituted into Eq.
(6), then

Q =r 'dM/d$— RT ,
=—ELGr X w +w—ELGr *(w" +w)

—RyLGo*r N =) (13)

Here R=0 if rotatory inertia is ignored and R=1 if
rotatory inertia is included.

To facilitate the numerical studies. the following
non-dimensional system variables are defined. First, the
rise H, the span length / and the total arc length s,

are normalized by the chord length L:

h=HIL (14)
e=|[/L (15)
k:Sf/L (16)

The section ratioe and slenderness ratio A are
defined as follows.

a=1.11; (17)
A= LI/ AN (18)
The co-ordinates (x, y), the displacements (w, v),

the radius of curvature » and the arc length s are
normalized by the chord length L:

E=x/L (19)
n=y/L (20)
S=w/L (21
t=vo/L (22)
o=rlL (23)
n=s/L (24)
Finally, the non-dimensional frequency parameter is
defined as
ci= 0, AL(y/E)"* (25)

which is written in terms of the ith frequency
w=w;, 1=1,2,3,4,--.

When Egs. (7). (10) and (13) are substituted into
Eq. (5) and the non-dimensional forms of Eqs. (14) ~
(25) are used, the result is

8= a8 + at az )8+ agt as &)
+(ag+ a7 )6+ (ag+ ay ) & +ay ¢

(26)
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When Egs. (7), (11) and (13) are substituted into
Eq. (4) and the non-dimensional forms of Egs, (14) ~
(25) are used, the result is

¢ =and t(apdd —1)& +apd+aul +ascit
(27)

In the last two equations, the constants are as follows.

a=—2G"G '+50 07" (28-a)
a=—2—G"'G '+5G° G o 1 —8p % ?

+20 07! (28-b)
ay=—RA™%* (28-¢)
a=—2G'G '+50 0! (28-d)
as=—RAUG G o' —0'p) (28-¢)
ag=—1-2"FG '’ -GG +5G'G o' p™!

—80 % 1 4+20" 0! (28-1)
a=FG o (28-g)
ag=—AFG™'o? (28-h)
ay=RA %0 (28-1)
ap=RA UG G 'p*—0p) (28-3)
ap=A" GF 'p'p”? (28-k)
ap=RA'GF™! (28-1)
ap=A" GF Yo *—FF '4+0p! (28-m)
ay=—FF '+op0! (28-n)
as=—RATIGF ™1 =37 %p* (28-0)

The Egs. (26) and (27) with p'=p"=0 are
reduced to governing differential equations for in-plane
free vibration of tapered circular arch and these results
coincide with equations of Wilson, et al."”.

Arch stresses may be computed from the following
non-dimensional forms for the normal load &, the
transverse load @ and the bending moment M. The
respective results, obtaining from Egs. (7)., (13) and
(8) using Egs. (14) ~(25), are:

=Fo N +)+Ge (& +98)
q :QLZ/EI/ )
=—Go N+ &) —(GCp 3 =2Go 0 )N& +8)
— R Gp W& ~0) (30)
=— G 20(8" +6)
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For the clamped end at x=0, the boundary
conditions are w=uv=¢=0 and these relations can be

expressed in non-dimensional forms as

0=0 at £=0 (32
{=0 at £=0 (33)
=0 at £€=0 (34)

For the free end at x=/, the boundary conditions
are N= Q= M=0 and these relations can be expressed

in non-dimensional forms as

n=0at &=e¢ (35)
g=0at £=e (36)
m=0 at &=e (37)

3. Geometric and Shape Functions: ¢ and
e, and F and G

The governing differential equations (26) and (27)
discussed in section 2 are derived in polar co-ordinates
system, However, the equation of non-circular shape is
given in Cartesian co-ordinates as shown in Eq. (1).
Therefore all variables related in geometric functions of

¢ and p in polar co-ordinates should be converted to
the wvariables in Cartesian ones. Also, the shape
functions of F and G related with the tapered arch
should be converted. Now consider both the geometric
and shape functions. First, the geometric functions ¢
and p are defined. The non-dimensional form for the
parabolic arch shape given in Eq. (1) is obtained by
using Eqs. (14), (15), (19) and (20). The result is

n= —4hE(£-1), 0=é<e (38)

By definition and by using Eq. (38), the following
equations are obtained in term of single variable &

¢ =n/2—tan " '(dn/dE)
=r/2—tan '[—4h(2&-1)] 39
p =[1+(dy/d&)*1"%/(d*/dE") (40)

= (1/8)h '[1+164%(2E— 1)1

Also, by definition and by using Egs. (39) and (40),
the equations of p” and o’ are obtained as follows.

o =(do/d)(dE/dp) , , (41)
=(3/2)(2&—DI1+ 16K (26— 14"
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" =(do’/dE)(d&/ dg)
=(3/)h [1+64K° (26—1)%)
x[1+164% (26— 1)%]*? (42)

Second, the shape functions F and G are considered.
Of the two basic classes of arched members'"”, both
the prime and quadratic arches are adopted here. The
function G is derived for the prime arch. A prime arch
is defined as an arch whose moment of inertia of
cross-section varies in accordance with the prime
equation of the arc length s:

I:]/’+(1f—I‘.)S/5,’ (43)

With Eqgs. (16), (17) and (24), the above equation
(43) becomes

I=Ila+(1—a)k 4] (44)

in which the variable g is defined already in Eq. (24)
and can be obtained as follows.

7 =f[l+(d77/d5)2]”2d6 (45)
= [ 141673 (26— D*)"ae, 0<é<e

It is noted that the integration of Eq. (45) can be
performed by Simpson's rule used in this study and
the k£ value defined in Eq. (16) is equal to the value
of pat &=e.

When Egs. (3) and (44) are combined, the function
of G can be expressed in terms of the variable x. The
result is

G=a+(1~a)k 'u (46)

in which the g variable can be expressed in term of &
as shown in Eq. (45).

When Eq. (46) are differentiated once and twice,
the results are

G =(1—a)k 'du/d¢
o (47)
G =(1—-ak o (48)

In last two equations, the o and p’ are defined in Egs.
(40) and (41), respectively.
Similarly, the G, G° and G”° of quadratic arch are

obtained as follows.

G=a+(1—a)k * (49)
G =2(1-a)k ou (50)
G =201—a)k Uo*+ o' 1) (51)

Finally, the function F is defined for the
cross-sectional shape, In this study, the cross-sectional
shape is lmited to the rectangular cross-section. The
functions F and F~ for rectangular cross-section are

: (14}
expressed in the form

F=G" (52)
F=rcr¢ (53)

In Egs. (52) and (53), the value of I'is I'=1 for
the breadth taper., I'=1/2 for the square taper, and
I'=1/3 for the depth taper.

As discussed above, all variables in section 2 can
now be calculated from the single variable & and
consequently, the differential equations (26) and (27)
can be solved in the Cartesian co-ordinates, not in the
polar coordinates.

4_ Numerical Methods and Computed Results

Based on the above analysis, a general FORTRAN
computer program was written to calculate the
frequency parameters ¢(i=1,2,3,4) and the corres-
ponding mode shapes 8=84{&) and ¢={,(&), and the
stress resultants n=n,(8), ¢=¢{& and m=m ().
The numerical methods described by Lee and
Wilson®, and Oh, et al'’ were used to solve the
differential equations (26) and (27), subjected to the
boundary conditions of Eqgs.(32)~(37). First, the
determinant search method"” combined with the
Regula-Falsi method"™ was used to calculate the
frequency parameters c¢; and then the Runge-Kutta
method'” was used to calculate the mode shapes.
For given arch parameters 4, @, A, e, I' and R(=0
or 1), the four lowest wvalues of ¢; and the
corresponding mode shapes were calculated. The
numerical results, given in Tables 1~3 and Figures 3~
7, are summarized as follows,

In Table 1, comparisons are made between ¢;
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computed using the present analysis with R=1 and ¢;
computed with the packaged finite element program
SAP 90. For latter calculations, 100 three-dimensional
finite beam elements were used and effects of shear
areas were not included. Comparing the results for like
arch parameters, the results for «¢; agree to within
2.5%. The remainder of the numerical results are based
on the present analysis.

Table 2 shows the effect of rotatory inertia on the
The

to always depress

lowest four frequency parameters. inclusion of

rotatory inertia is the natural
frequencies.

In Table 3, the effect of cross-sectional shapes on c;

is displayed. Here, the ¢; value always increases as the

Table 3 Effect of cross-sectional shapes on frequency

parameter, ¢;

Frequency parameter, ¢;
Geometry' | T

=1 =2 =3 =4
1 5.600 30.28 54.67 84.59
A=20 1/2 6.059 32.68 52.00 94.97
1/3 6.212 33.25 51.41 98.50
1 5.669 32.47 94.28 183.3
A=100 1/2 6.148 36.47 1089 212.1
1/3 6.309 37.86 114.1 2216

*n=03, =3, =07, R=1, prime member

cross-sectional

shapes

increase from breadth taper

(I'=1) to square taper (I'=1/2)

(r=1/3).

Table 1 Comparison of results between this study
( R=1)and finite element method(SAP 90)

to depth taper

Frequency parameter, ¢;
Geometry z
This study SAP 90
h=03, 2=3, A=100, | 1 11.33 11.40
=05 7—1 -1/2 2 68.64 69.19
e=Uo, L =l72, 3 196.4 2009
prime member 4 307.2 307.7
k=04, @=2, 1=80 1 2.895 2.937
_8 o fi S0 2 1885 19.10
e=ve, L=, 3 59.83 60.36
quadratic member 4 1176 119.6
Table 2 Effect of rotatory inertia on frequency

parameter, c¢;

Frequency parameter, C;
Geometry” R

=1 1=2 1=3 =4
A=10, 0 6133 | 2200 | 4126 | 6L12
e=0.7 1 5798 | 2200 | 4083 | 59.79
A=30, 0 4787 | 2690 | 69.12 | 8559
e=08 1 4764 | 2652 | 6800 | 81.92
A=30, 0 3817 | 2067 | 6250 | 1105
2=09 1 3812 | 2059 | 6160 | 1100
A=T10, 0 3100 | 1575 | 4742 | 96.37
e=1.0 1 300 | 1573 | 4715 | 95.25

*h=03, «=3, I =1/2, prime member
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400
j =3, 2=100,e=07, T=1/2,R=1
| —— : quadratic member
4 ------- . prime member

300 —{i=1,2,3,4 : from bottom to top
-1

S M

100

]
0 T L ‘ T 1T 7T TT |‘|7'|' T LI l LI
0.0 0.2 04 0.6 0.8 1.0

h

Fig. 3 ¢; versus X curves

It is shown in Fig 3, for which ¢e=3, A=100,
e=0.7, I'=1/2(square taper), and R=1 for both
the prime and quadratic members, that the frequency

parameters ¢,(i=1,2,3,4) decrease as the rise to

chord
observed that the ¢; values of quadratic member are

length ratio # is increased. Further, it is

greater than those of prime one. However, it is true
that the fact is reversed for the 4th mode when the %
value is less than about 0.2. Since the differences
between the solid and dashed curves are very narrow,
it is concluded that the effect of arched members on
¢; may be negligible.

The results shown in Fig. 4 for 2=0.3, A= 100,
e=0.7, I'=1/2 and R=1 depict the variation of
c{i=1,2,3,4) with the section ratio @. It is found
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that the ¢, values are increased as the e value
increases. The increasing rate of ¢; is higher at higher
mode and especially that of first mode is relatively
small comparing with the higher modes.

Figure. 5 shows the relationship between the
c(i=1,2,3,4) values and the slenderness ratio A for
£=0.3, @a=3, ¢=0.7, I'=1/2 and R=1.1t is seen
that the ¢, values increase, and in most cases approach
a horizontal asymptote, as the A value is increased. For
the first mode, the effect of A is very minor so that
ifs effect is negligible,

It is shown in Fig. 6, for which 2=0.3, a=3,
A=100, I'=1/2 and R=1. that thec(i=1,2,3,4)
values decrease as the span length to chord length
ratio e is increased. The decreasing rate of each mode
is very high when the e value is less than about 0.4,

400

h=03, A=100,e=07, r=12,R=1
———— ! quadratic member

: prime member

: from bottom to top

300

100

?_
< 200 %_
i

O LN S A A N R (L N L B AL B B N

0 2 4 6 8 10
a
Fig. 4 c¢; versus a curves

400
1 h=03, a=3,e=07 =1/2,R=1
] 1 quadratic member
4 --—----- : prime member

300 - i=1,2,3,4 : from bottom to top
]

5200
100
0 %‘Iﬁ T I T T T l T T T ] T T T
0 50 100 150 200
A

Fig. 5 c¢; versus A curves

Shown in Fig.7 are the computed frequency
parameters ¢{7=1,2) and their corresponding mode
(n, g, m) as well as displacements (8, &) for which
h=0.3, a=3, =100, e=0.7, I'=1/2, R=1land
prime member, It is noted that for the axial load ». the
first and second mode shapes are reversed with each
other comparing with another modes.

800

h=03, ¢=3. A=100, =12 R=]
: quadratic member
_______ : prime member

. from bottom to top

600

S 400

200

TS T AT T T ' S

0 LRI SR L I L B A B B B B
0.0 02 04 06 08 1.0
(S

Fig. 6 c¢; versus e curves

h=0.3, a=3, A=100, e=0.7, I'=1/2, R=1, prime member

——-  undeformed axis ——— ! mode shape

(a) First mode( ¢ =6.148)

(b) Second mode( ¢y =3647)

Fig. 7 Example of mode shapesshapes of stress
resultants

o
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5. Concluding Remarks

By employing the governing differential equations in
Cartesian co-ordinates, the numerical methods for
calculating the free vibration, in-plane frequencies and
mode shapes for the tapered cantilever arches with
variable curvature were found to be especially robust
and reliable over a wide and practical range of arch
parameters, The inclusion rotatory inertia was found to
depress the natural frequencies. The ¢; values increase

as the cross-sectional shape increases from breadth to
square to depth tapers. The effect of type of arched

members on c¢; is minor. The ¢; values increase as
both the @ and A values are increased while the c¢;

values decrease as both the # and e values are
increased. The typical mode shapes of displacement
(6, ©) as well as the stress resultants (#, g, m) are
reported.
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