Crystal Structure and Electrical Transport Characteristics of ${La_{1-x}}{Sr_x}{MnO_{3-{\delta}}}$(0.19$\leq$x$\leq$0.31) Thin Films

${La_{1-x}}{Sr_x}{MnO_{3-{\delta}}}$(0.19$\leq$x$\leq$0.31) 박막의 결정구조 및 전기전도 특성

  • Heo, H. (Dept. of Materials Science and Engineering, Inha University) ;
  • Lim, S.J. (Dept. of Materials Science and Engineering, Inha University) ;
  • Cho, N-H. (Dept. of Materials Science and Engineering, Inha University)
  • 허현 (인하대학교 재료공학부) ;
  • 임세주 (인하대학교 재료공학부) ;
  • 조남희 (인하대학교 재료공학부)
  • Published : 2000.06.01

Abstract

We investigated the effect of substrate temperature, chemical composition and post-deposition heat-treatment on the crystal structure and electrical transport of $La_{1-x}Sr_xMnO_{3-{\delta}}$(0.19${\leq}x{\leq}$0.31) thin films. As-prepared $La_{1-x}Sr_xMnO_{3-{\delta}}$ films grown at $500^{\circ}C$ by sputter techniques were found to have the pseudo-tetragonal system(a/c=0.97) and a highly preferential <001> orientation. The films were changed to be of the cubic system by post-deposition annealing at around $900^{\circ}C$. A main target of $La_{0.67}Sr_{0.33}MnO_3$ as well as auxliary targets of $La_{0.3}Sr_{0.7}MnO_3$ ceramics were co-sputtered to control the chemical composition of the film. The Sr content(x) of the film ranged from 0.19 to 0.31, depending on the number of the auxiliary target. When x increased from 0.19 to 0.31, the electrical resistivity of the film decreased and the transition temperature between metal and semiconductor shifted to higher temperature. With a magnetic field of 0.18 T, the magneto-resistance ratio (MR(%) = (${\rho}_o-{\rho}_H/{\rho}_H$) of the $La_{0.69}Sr_{0.31}MnO_3$ thin film was about 390%.

기판온도, 박막조성 및 증착후 열처리 등의 조건에 따른 ${La_{1-x}}{Sr_x}{MnO_{3-{\delta}}}$(0.19$\leq$x$\leq$0.31) 박막의 결절구조와 전기전도 특성을 조사하였다. 스퍼터법을 이용하여 $500^{\circ}C$에서 증착된 박막은 강한 <001> 우선배향성과 유사정방정(pseudo-tetrag-onal, a/c-=0.97) 결정체를 나타냈다. 이러한 박막의 단위포는 산소분위기 내에서 증착후 열처리에 의하여 입장정 결정계로 변하였다. $La_{0.67}Sr_{0.33}MnO_3$ 조성의 주타겟과 $La_{0.3}Sr_{0.7}MnO_3$조성의 보조타겟을 동시에 이용하여 박막의 조성을 조절하였다. 보조타겟의 개수에 따라 박막내의 Sr 함량(x)은 0.19-0.31 범위의 값을 나타내었으며, x값이 0.19로부터 0.31로 증가시 금소-반도체의 전이 온도가 상승하였고, 전지비저항이 대체로 감소하였다. 0.18 T의 자기장 하에서, $La_{0.69}Sr_{0.31}MnO_3$조성의 박막의 자기저항변화 MR((%) = (${\rho}_o-{\rho}_H/{\rho}_H$)는 약 390% 이었다.

Keywords

References

  1. Phys. Rev. v.B47 no.10 R. B. van Dover
  2. J. Appl. Phys. v.76 no.10 S. Jin;M. McCormack;T. H. Tiefel;R. Ramesh
  3. J. Phys. Chem. Solids v.59 no.4 C. N. R. Rao;R. Mahesh;A. K. Raychaudhuri;R. Mahendiran
  4. Phys. Rev. v.82 C. Zener
  5. Phys. Rev. Lett. v.74 no.25 A. J. Millis;P. B. Littlewood;B. I. Shraiman
  6. Phys. Rev. Lett. v.75 no.5 H. Y. Hwang
  7. Physica C v.202 G.-M. Zhao;M. B. Hunt;K. Conder;H. Keller;K. A. Muller
  8. Solid Satate Commun. v.105 no.9 B. Garcia-Landa;M. R. Ibarra;J. M. De Teresa;Guo-meng Zhao;K. Conder;H. Keller
  9. Phys. Rev. Lett. v.79 no.17 J.-S. Zhou;J. B. Goodenough;A.Asamitsu;Y. Tokura
  10. J. Magn. and Magn. Mater. v.172 C. Kwon;M. C. Robson;K.-C. Kim;J. Y. Gu;S. E. Lofland;S. M. Bhagat;Z. Trajanovic;M. Rajeswari;T. Venkatesan;A. R. Kratz;R. D. Gomez;R. Ramesh
  11. J. Solid State Commun. v.102 no.6 H. L. Ju;Hyunchul Sohn
  12. Phys. Rev. v.B53 no.3 Warren E. Pickett;David J. Singh
  13. J. Crystal Growth v.174 M. E. Hawlcy;C. D. Adams;P. N. Arendt;E. L. Brosha;F. H. Garzon;R. J. Houlton;M. F. Hundley;R. H. Heffner;Q. X. Jia;J. Ncumeier;X. D. Wu
  14. Nucl. Inst. Meth. v.B9 L. R. Doolittle
  15. J. Vac. Sci. Technol. v.A3 no.6 T. C. Huang;G. Lim;F. Parmigini;E. Kay
  16. Electron doped manganites: charge ordering and CMR properties B. Raveau;A. Maignan;C. Martin;M. Herview
  17. IBM J. Res. Develop. v.42 no.1 J.Z. Sun;L.K. Elbaum;A. Gupta;G. Xiao;P.R.Duncombe;S.S.P. Parkin
  18. J. Appl. Phys. v.81 no.8 G. Xiao;G. Q. Gong;C. Canedy
  19. Solid State Commun. v.100 no.12 P. Dai;J. Zhang;H. A. Mook;F. Foong;S.-H. Liou;P. A. Dowben;E. W. Plummer
  20. Solid Oxide Fuel Cells v.93-4 The High Temperature Materials and Bettery Divisions S. C. Singhal;H. Iwahara;S. C. Singhal(ed.)
  21. Phys. Rev. v.B54 no.19 R. Schuster;H. Roder;K. Bromann;H. Brune;K. Kern
  22. J. Appl. Phys. v.80 no.5 T. Benabbas;P. Francois;Y. Androussi;A. Lefebvre
  23. MRS Bulletin v.24 no.5 J. Eckert;G. D. Stucky;A. K. Cheetham
  24. Phys. Rev. v.B53 W. Archibald;J. S. Zhou;J. B. Goodenough
  25. Phys. Rev. v.B51 no.20 T. Saitoh;A. E. Bocquet;T. Mizokawa;H. Namatame;A. Fujimori
  26. Science v.276 C.N.R. Rao;A.K. Cheetham
  27. J. Appl. Phys. v.81 no.12 N. Kalechofsky;Y.-K. Tsui;H. Reichenbach;P. McGinn
  28. J. Magn. and Magn. Mater. v.183 F. Damay;C. Martin;A. Maignan;B. Ravequ