Effects of Ti or Ti/TiN Underlayers on the Crystallographic Texture and Sheet Resistance of Aluminum Thin Films

Ti 또는 Ti/TiN underlayer가 Al 박막의 배향성 및 면저항에 미치는 영향

  • Lee, Won-Jun (Research Center, Hyundai Microelectronics) ;
  • Rha, Sa-Kyun (Department of Materials Engineering, Taejon National University Technology)
  • 이원준 (현대반도체 연구소) ;
  • 나사균 (대전산업대학교 재료공학과, 반도체기술연구소)
  • Published : 2000.01.01

Abstract

The effects of the type and thickness of underlayers on the crystallographic texture and the sheet resistance of aluminum thin films were studied. Sputtered Ti and Ti/TiN were examined as the underlayer of the aluminum films. The texture and the sheet resistance of the metal thin film stacks were investigated at various thicknesses of Ti or TiN, and the sheet resistance was measured after annealing at $400^{\circ}C$ in an nitrogen ambient. For the Ti underlayer, the minimum thickness to obtain excellent texture of aluminum <111> was 10nm, and the sheet resistance of the metal stack was greatly increased after annealing due to the interdiffusion and reaction of Al and Ti. TiN between Ti and Al could suppress the Al-Ti reaction, while it deteriorated the texture of the aluminum film. For the Ti/TiN underlayer, the minimum Ti thickness to obtain excellent texture of aluminum <111> was 20nm, and the minimum thickness of TiN to function as a diffusion barrier between Ti and Al was 20nm.

Underlayer의 종류 및 두께가 Al 박막의 배향성 및 면저항 변화에 미치는 영향을 연구하였다. Al의 underlayer로서 sputtering 방식으로 증착되는 Ti와 TiN이 적층된 구조인 Ti/TiN이 사용되었으며, 각각에 대해 두께를 변화시키면서 Al 박막의 배향성, 면저항을 조사하였고, $400^{\circ}C,\;N_2$ 분위기에서 열처리하면서 면저항의 변화를 조사하였다. Ti만을 Al의 underlayer로 사용한 경우, Ti두께가 10nm 이상이면 우수한 Al <111> 배향성을 나타냈으며 Al-Ti 반응 때문에 열처리 후 Al 배선의 면저항이 크게 상승하였다. Ti와 Al사이에 TiN을 적용함에 의해 Al <111> 배향성은 나빠지나 Al-Ti 반응에 의한 면저항의 증가는 억제할 수 있었다. Ti/TiN underlayer의 경우, 우수한 Al <111> 배향성을 확보하기 위한 Ti의 최소두께는 20nm이었고, Al-Ti 반응을 억제하기 위한 TiN의 최소두께는 20nm이었다.

Keywords

References

  1. IEEE Trans. Electron Devices v.32 H. B. Bakoglu
  2. JOM September J. E. Sanchez, Jr.;J. W. Morris, Jr.;J. R. Lloyd
  3. Mater. Sci. Eng. v.11 H. Okabayashi
  4. J. Appl. Phys. v.76 D. P. Tracy;D. B. Knorr;K. P. Rodbell
  5. J. Vac. Sci. Technol. B v.15 J. M. E. Harper;K. P. Rodbell
  6. J. Vac. Sci. Technol. B v.16 D. B. Knorr;S. M. Merchant;M. A. Biberger
  7. Mater. Res. Soc. Symp. Proc. v.309 D. B. Knorr
  8. Thin Solid Film v.75 S. Vaidya;A. K. Sinha
  9. Appl. Phys. Lett v.59 D. B. Knorr;D. P. Tracy;K. P. Rodbell
  10. J. Appl. Phys. v.79 D. B. Knorr;K. P. Rodbell
  11. Mater. Res. Soc. Symp. Proc. v.343 J. L. Hurd;K. P. Rodbell;D. B. Knorr;N. L. Koligman
  12. Mater. Res. Soc. Symp. Proc. v.428 W. C. Shih;A. Ghiti;K. S. Low;A. L. Greer;A. G. O'Neill;J. F. Walker
  13. IEEE Trans. Electron Devices v.32 D. S. Gardner;T. L. Nichalka;K. C. Saraswat;T. R. Barbee, Jr.;J. P. Macvittie;J. D. Meindl
  14. 32th IEEE/IRPS Conf. Proc. K. Hashimoto;K. Touchi;H. Onoda
  15. 33rd IEEE/IRPS Conf. Proc. E. M. Atakov;J. Ling;J. Maziarz;A. Shepela;B. Miner;C. England. W. Harris;D. Dunnell
  16. Appl. Phys. Lett. v.23 R. W. Bower
  17. Proc. SPIE v.1805 K.Y. Fu;H. Kawaski;J. O. Olowolafe;R.E. Pyle
  18. 29th IEEE/IRPS Conf. Proc. M. Kageyama;K. Hashimoto;H. Onoda
  19. 28th IEEE/IRPS Conf. Proc. K. Hinode;Y. Homma
  20. J. Appl. Phys. v.36 B. E. Deal;A. S. Grove
  21. J. Vac. Sci. Technol. B v.6 R. K. Nahar;N. M. Devashrayee;W. S. Khokle