Microstructure Evolution and Properties of Silicides Prepared by dc-sputtering

스퍼터링으로 제조된 니켈실리사이드의 미세구조 및 물성 연구

  • An, Yeong-Suk (Dept.of Materials Sciences & Engineering, University of Seoul) ;
  • Song, O-Seong (Dept.of Materials Sciences & Engineering, University of Seoul) ;
  • Lee, Jin-U (Dept.of Materials Sciences & Engineering, University of Seoul)
  • 안영숙 (서울시립대학교 재료공학과) ;
  • 송오성 (서울시립대학교 재료공학과) ;
  • 이진우 (서울시립대학교 재료공학과)
  • Published : 2000.09.01

Abstract

Nickel mono-silicide(NiSi) shows no increase of resistivity as the line width decreases below 0.15$\mu\textrm{m}$. Furthermore, thin silicide can be made easily and restrain the redistribution of dopants, because NiSi in created through the reaction of one nickel atom and one silicon atom. Therefore, we investigated the deposition condition of Ni films, heat treatment condition and basic properties of NiSi films which are expected to be employed for sub-0.15$\mu\textrm{m}$ class devices. The nickel silicide film was deposited on the Si wafer by using a dc-magnetron sputter, then annealed at the temperature range of $150~1000^{\circ}C$. Surface roughness of each specimen was measured by using a SPM (scanning probe microscope). Microstructure and qualitative composition analysis were executed by a TEM-EDS(transmission electron microscope-energy dispersive x-ray spectroscope). Electrical properties of the materials at each annealing temperature were measured by a four-point probe. As the results of our study, we may conclude that; 1. SPM can be employed as a non-destructive process to monitor NiSi/NiSi$_2$ transformation. 2. For annealing temperature over $800^{\circ}C$, oxygen pressure $Po_2$ should be kept below $1.5{\times}10^{-11}torr$ to avoid oxidation of residual Ni. 3. NiSi to $NiSi_2$ transformation temperature in our study was $700^{\circ}C$ from the four-point probe measurement.

Ni mono-silicide는 선폭이 0.15$\mu\textrm{m}$이하에서도 전기저항이 커지는 현상이 없고 Ni와 Si이 1:1로 반응하기 때문에 얇은 실리사이드의 제조가 가능하고 도펀트의 재분포 현상을 감소시킬수 있다. 따라서 0.15$\mu\textrm{m}$급 이하 디바이스에 사용이 기대되는 NiSi의 제조를 위한 Ni 박막의 증착조건 확보와 열처리 조건에 따른 NiSi의 기초 물성조사를 수행하였다. Ni mono-silicide는 sputter의 물리적 증착방법으로 Ni 박박을 증착후 관상로를 상용하여 $150~1000^{\circ}C$ 온도 범위에서 제조하였다. 그후 SPM을 이용하여 각 시편의 표면조도를 측정하였고, 미세구조와 성분분석은 EDS가 장착된 TEM을 사용하여 측정하였다. 각 열처리 온도별 생성상의 전기적 성질은 4 point probe로 측정하였다. 본 연구의 결과, SPM은 비파괴 방법으로 NiSi가 NiSi$_2$로 변태되었는지 확인할 수 있는 효과적인 공정모니터링 방법임을 확인하였고, $800^{\circ}C$이상 공온 열처리에 잔류 Ni의 산화방지를 의해 산소분압의 제어가 $Po_2$=1.5$\pm$10(sup)-11색 이하가 되어야 함을 알 수 있었으며, 전지적 특성실험으로부터 본 연구에서 제조된 박막의 NiSi$\longrightarrow$NiSi$_2$ 상태변온도는 $700^{\circ}C$라고 판단되었다.

Keywords

References

  1. Silicon Processing for the VLSI era S. Wolf
  2. Semiconductor devices S.M. Sze
  3. VLSI Technology S.M. Sze
  4. J. Electron. Mater. v.25 C.M. Osburn;J.Y. Tasi;J. Sun
  5. Proceedings of the 26th European Solid state Device Research Conference v.303 G.K. Reeves;A.S. Holland;H.B. Harrison;P.W. Keech
  6. IEEE T-ED'94 v.2305 T. Ohguro (et al.)
  7. IEEE T- ED '91 v.264 J.B. Laski (et al.)
  8. VLSI Sympo'92 v.66 I. Sasaki (et al.)
  9. VLSI Sympo'96 v.14 J.A Kittl (et al.)
  10. IEDM'96 v.451 K. Fujii (et al.)
  11. IEEE Trans. Electron Dev. v.38 J.B. Laskey;J.S. Nakos;O.J. Chan;P.J. Geiss
  12. IEDM'93 v.906 T.Yamazaki (et al.)
  13. Electrochem. Society Sympo T. Ohguro (et al.)
  14. IECM'91 v.653 T. Morimoto (et al.)
  15. IEEE Trans. Electron Dev. v.42 T. Morimoto (et al.)
  16. IEDM'95 v.453 T. Ohguro (et al.)
  17. J. Electrochemical Society H. Jiang
  18. Thin Solid Films v.347 B.A Julies;D. Knoesen;R. Pretorius;D. Adams
  19. Thin Solid films v.326 D.X. Xu;S.R. Das;C.J. Peters;L.E. Erickson
  20. J. of Applied Physics v.81 no.12 F. Deng;R.A. Johnson;P.M. Asbeck;S.S. Lau;W.B. Dubbelday;T. Hsiao;J. Woo
  21. Applied Physics letters v.74 no.19 S.J. Nagtel;I. Coulthard;T.K. Sham;D.X. Xu;L. Erickson;S.R. Das
  22. J.Vac.Sci.Technol v.A16 no.3 Yaozhi Hu;Sing Pin Tay
  23. Introduction to the Thermodynamics of Materials D. R. Gaskell