Microstructures and Electrical Properties of Zr Modified $({Ba_{1-x}},{Sr_x})TiO_3$ Thin Films

Zr이 첨가된 $({Ba_{1-x}},{Sr_x})TiO_3$ 박막의 미세구조와 전기적 성질

  • Published : 2000.09.01

Abstract

Zr modified $(Ba_{1-x},Sr_x)TiO_3$ thin films as capacitor for high density DRAM were deposited by r.f. magnetron sputtering. The films deposited at various chamber pressure exhibited a polycrystalline structure. The Zr/Ti ratio of the films increased significantly with decreasing the chamber pressure and this variation affected the microstructure and surface roughness of films When chamber pressure increased dielectric constant of the films effected due to decrease of Zr. The thin films prepared in this study show dielectric constant of 380 to 525 at 100KHz. The variation of capacitance and polarization measured as a function of bias voltage suggested that all films were paraelectric phases. Leakage current exhibited smaller value as chamber pressure decrease and the leakage current density of the films deposited above 10mTorr was $10^{-7}~10^{-8}A/cm^2$ order at 200kV/cm. $(Ba_{1-x},Sr_x)(Ti_{1-y},Zr_y)O_3$ thin films in this study appeared to be potential thin film capacitor for high density DRAM.

고밀도 DRAM에서 박막 커패시터로의 적용을 위해 Zr이 첨가된 (Ba(sub)1-x, Sr(sub)x)TiO$_3$<원문차조> 박막이 r.f. magnetron sputter-ing 법에 의해 제조되었다. 증착된 박막들은 다결정질 구조를 보였으며 증착압력이 감소함에따라 Zr/Ti의 비가 현저히 증가하였으며 본 연구에서는 얻어진 박막들은 100kHz에서 380∼525의 유전상수값을 나타냈다. 전압에 따른 커패시턴스와 분극량의 변화는 이력특성을 크게 보이지 않아 상유전상으로 형성되었음을 보였다. 누설전류밀도는 증착압력이 감소함에 따라 작아지는 경향을 보였고 10mTorr이상에서 증착된 박막의 경우 200kV/cm의 전계에서 10(sup)-7∼10(sup)-8A/$\textrm{cm}^2$의 차수를 갖는 누설전류밀도를 보여 본 연구에서 제조된 (Ba(sub)1-x, Sr(sub)x)(Ti(sub)1-x, Zr(sub)x)O$_3$<원문참조>박막은 고밀도 DRAm을 위한 커패시터에의 적용가능성을 보였다.

Keywords

References

  1. IEEE Trans. Elec. Dev. v.46 S. Yamamichi;A. Yamamichi;R. Park;T. King;C. Hu
  2. IEEE Trans. Elec. Dev. v.39 R. Moazzami;C. Hu;W.H. Shepherd
  3. J. Appl. Phys. v.62 K. Sreenivas;A. Mansingh;M. Sayer
  4. J. Appl. Phys. v.72 S. Nam;H. Kim
  5. Jpn. J. Appl. Phys. v.32 T. Horikawa;N. Mikami;T. Takita;J. Tanimura;M. Kataoka;K. Sato;M. Nunoshita
  6. Jpn. J. Appl. Phys. v.35 S. Park;J. Won;K. Lee;J. Choi;C. Park
  7. J. Mater. Res. Soc. v.8 V. Mehrotra;S. Kaplan;A.J. Sievers;E.P. Giannelis
  8. Jpn. J. Appl. Phys v.36 Y. Takeshima;K.Shiratsuyu;H. Takagi;Y. Sakabe
  9. Integrated Ferroelectrics v.17 S. Hoffmann;R. Waser
  10. Jpn. J. Appl. Phys. v.37 H.J. Shy;T.B. Wu
  11. Thin Soild Films v.334 T.B. Wu;C.M. Wu;M.L. Chen
  12. J. Mat. Science v.25 I.C. HO;S.L. Fu
  13. Jpn. J. Appl. Phys. v.36 C.F. Yang
  14. Jpn. J. Appl. Phys. v.38 E.S Choi;J.C. Lee;J.S. Hwang;S.G. Yoon
  15. Intergrated Ferroelectrics v.17 T.Li;P. Zawadski;R.A. Stall;S. Liang;Y. Lu