The Effects of Fe and V on the Characteristics of $\beta$to$\alpha$ Transformation for Zr-0.8Sn Alloys

Fe와 V이 Zr-0.8Sn 합금의 $\beta{\rightarrow}\alpha$ 상변태 특성에 미치는 영향

  • O, Yeong-Min (Dept. of Materals Engineering, Hanyang University) ;
  • Kim, Seon-Jin (Dept. of Materals Engineering, Hanyang University)
  • 오영민 (한양대학교 공과대학 재료공학과) ;
  • 김선진 (한양대학교 공과대학 재료공학과)
  • Published : 2000.09.01

Abstract

The effects of Fe and V content on the characteristics of $\beta$ to $\alpha$ phase transformation for Zr-0.8Sn alloys were studied by optical and transmission electron microscopy. With increasing V content, $\beta{\rightarrow}\alpha+\beta$ transformation temperature decreased, thus allowing the width of $\alpha$-lath to be fine air-cooled Zr-0.8Sn-xV alloys. The width of $\alpha$-lath, however, was slightly increased with Fe content. While the $\beta$ to $\alpha$ transformed microstructures of water-quenched Zr-0.8Sn, Zr-0.8Sn-0.1Fe, Zr-0.8Sn-0.2Fe, Zr-0.8Sn-0.4Fe, Zr-0.8Sn-0.1V and Zr-0.8Sn-0.2V were mainly slipped martensite, that of water-quenched Zr-0.8Sn-0.4V was predominantly twinned martensite. The transition of slipped martensite to twinned martensite in Zr-0.8Sn-Xv was thought to be due to the decrease of $M_S$ temperature.

Zr-0.86Sn 합금이 $\beta{\rightarrow}\alpha$상변태 특성에 미치는 Fe와 V의 영향을 광학현미경과 투과전자현미경으로 연구하였다. 공냉의 경우에는 V의 첨가량이 증가함에 다라 $\beta{\rightarrow}\alpha+\beta$변태온도가 감소하여 미세한 $\alpha$-lath들의 폭을 더욱 감소시켰으나, Fe의 경우에는 첨가량이 증가함에 다라 오히려 $\alpha$-lath의 폭이 약간 증가하였다. 수냉의 경우에는 모든 합금에서 martensite 미세구조를 보였다. 수냉한 Zr-0.8Sn, Zr-0.8Sn-0.1Fe, Zr-0.8Sn-0.2Fe, Zr-0.8Sn-0.4Fe, Zr-0.8Sn-0.1V 그리고 Zr-0.8Sn-0.2V 합금에서는 주로 slipped martensite 미세구조가 형성된 반면에 수냉한 Zr-0.8Sn-0.4V 합금에서는 twinned martensite 미세구조가 관찰하였다. 수냉한 Zr-0.8Sn 합금에서 V의 첨가향이 증가함에 따라 slipped martensite에서 twinned martensite 미세구조로의 천이는 M(sub)s 온도의 감소에 기인한 것으로 생각된다.

Keywords

References

  1. J. Nucl. Mater. v.132 T. Kubo;Y. Wakashima;H. Imahashi;M. Nagai
  2. Eight Int. Symp. v.1023 Zirconium in the Nuclear Industry W.J.S. Yang;R.B. Adamson
  3. J. Nucl. Mater. v.136 K.U. Huang
  4. J. Nucl. Mater. v.113 P. Chemelle;D.B. Knorr;J.B. Van der Sande;R.M. Pelloux
  5. J. Nucl. Mater. v.210 K. Loif;R. Borrelly;P.Merle
  6. J. Nucl. Mater. v.59 L.H. Keys;G. Johanson;A.S. Malin
  7. Metallography v.13 D.O. Northwood;K. Dosen
  8. Acta Metall. Mater v.41 no.12 D. Srivastava;Madangopa K.;S. Banerjee;S. Ranganathan
  9. Metall. Trans. JIM. v.9 C.D. Williams;R.W. Gibert
  10. Acta Metall v.37 no.3 V. Perovic;G.C. Weatherly
  11. Metal. and Mat. Trans. A v.28A S. Banerjee;G.K. Dey;D. Srivastava;S. Ranganathan
  12. J. Nucl. Mater. v.79 O.T, Woo;K. Tangri
  13. Binary alloy phase diagrams v.2;1129 J.L Murray;L.H. Bennett;H. Baker;T.B. Massalski
  14. J. Nucl. Mater. v.131 N.V. Bangaru
  15. Ninth Int. Symp. v.1023 Zirconium in the Nuclear Industry X. Meng;D.O. Northwood
  16. Solid to Solid Transformation v.1120 C.M Wayman
  17. Met. Trans. v.2 G. Krauss;A.R. Marder
  18. Met. Trans. A v.4 S. Banerjee;R. Krishan
  19. 한국재료학회지 v.9 no.12 오영민;정흥식;정용환;김선진