The Growth and Characterization of GaN Films by Direct reaction of Ga and $NH_3$

금속 갈륨과 암모니아의 직접반응에 의한 GaN 후막성장과 특성 연구

  • Yang, Seung-Hyeon (Shool of Chemical Engineering and Technology, Chonbuk National University) ;
  • Nam, Gi-Seok (Shool of Chemical Engineering and Technology, Chonbuk National University) ;
  • Im, Gi-Yeong (School of Science and Technology, Chonbuk National University) ;
  • Yang, Yeong-Seok (Department of Chemical Engineering, Woosuk University)
  • Published : 2000.03.01

Abstract

Thick GaN films were grown on (0001) sapphire substrates using the direct reaction gallium and ammonia. The GaN films grew dominantly along [0002] direction, but included the growth of GaN(1010) planeq with V-shaped facetted surfaces at low temperature. With increasing growth temperature, however, the growth of GaN (1010) and (1011) planes was appeared from the films, which gives rise to the growth of hexagonal crystal with pyramid-shaped surface. The growth rate of GaN films increased with increasing growth temperature, but decreased at $1270^{\circ}C$ because the GaN films began to decompose into Ga and N at the temperature. It seemed that the crystal and optical qualities of the GaN films improve with increasing $NH_3$ flow rate. From X-ray diffraction (XRD) and photoluminescence (PL) measurements, it was observed that the yellow luminescence (YL) appeared to be significant as the peak intensity of (1010) plane of XRD spectra increased.

고온에서 증발된 금속 갈륨 (Ga)을 암모니아 ($NH_3$) 기체와 직접 반응시켜 사파이어 (${\alpha}-Al_2O_3$) 기판 위에 GaN 후막을 성장하였다. 성장된 GaN는 주로 [0002] 방향으로 성장하였으나 낮은 성장온도에서는 [1011] 방향의 성장이 관찰되었으며 V-형태를 가진 매우 거친 표면을 보였다. 그러나 성장온도가 증가하면 [1010]와 [1011] 방향으로 성장이 관찰되었으며 피라미드면을 가진 육방정 결정이 성장되었다. 성장된 GaN의 두께는 온도가 증가할수록 증가하였으나, $1270^{\circ}C$의 고온에서는 열분해를 일으켜 두께가 감소하였다. 공급된 $NH_3$의 유량이 증가할수록 GaN의 결정성과 광특성은 향상되었다. X-선 회절기 (X-ray diffraction)와 광루미네센스(photoluminescence) 분석결과로 GaN 후막이 (1010) 면으로 성장되면 황색발광이 증가됨을 관찰할 수 있었다.

Keywords

References

  1. Jph. J. Appl. Phys. v.34 S. Nakamura;M. Senoh;N. Isawa;S. Nagahama
  2. Appl. Phys. Lett. v.67 S. Nakamura;M. Senoh;N. Isawa;S. Nagahama
  3. J. Crystal Growth v.150 H. Morkoc;A. Botchkarev;A. Salvador;B. Sverdlov
  4. Appl. Phys. Lett. v.61 T. Detchprohm;K. Hiramatsu;H. Amano;I. Akasaki
  5. Jpn. J. Appl. Phys. v.35 S. Kurai;T. Abe;Y. Naoi;S. Sakai
  6. Appl. Phys. Lett. v.69 no.18 S. Fischer;C. Wetzel;W. L. Hansen;E. D. Bourret-Courchesne
  7. J. Korean Phys. Soc. v.32 no.4 K. C. Kim;H. W. Shim;E.-K. Suh;H. J. Lee;K.S. Nahm
  8. JCPDS card #2-1078
  9. Phys. Rev. Lett. v.79 Z. Liliental-Weber;Y. Chen;S. Ruvimov;J. Washburn
  10. Mat. Res. Soc. Symp. Proc. v.482 Y. Xin;S. J. Pennycook;D. Browning;P. D. Nellist;S. Sivanathan;B. Beaumont;J.-P.Faurie;P. Gibart
  11. J. Crys. Growth v.151 W. Qian;M. Skowronski;K. Doverspike;L. B. Rowland;D. K. Gaskill
  12. J. Phys., Condens. Matter v.7 T. Azuhata;T. Sota;K. Suzuki;S. Nakamura
  13. J. Appl. Phys. v.75 T. Kozawa;T. Kachi;H. Kano;Y. Taga;M. Hashimoto;N. Koide;K. Manabe