Thermoelectric Properties of the Hot-pressed n-Type $Bi_2({Te_{0.85}}{Se_{0.15}})_3$ Alloy Prepared by Mechanical Alloying

기계적 합금화 공정을 이용하여 제조한 n형 $Bi_2({Te_{0.85}}{Se_{0.15}})_3$ 가압소결체의 열전특성

  • Kim, Hui-Jeong (Department of Metallurgical Engineering and Materials Science, Hong Ik University) ;
  • O, Tae-Seong (Department of Metallurgical Engineering and Materials Science, Hong Ik University) ;
  • Hyeon, Do-Bin (Matals Processing Research Center, Korea Institute of Science and Technology)
  • 김희정 (홍익대학교 공과대학 금속.재료공학과) ;
  • 오태성 (홍익대학교 공과대학 금속.재료공학과) ;
  • 현도빈 (한국과학기술연구원 금속공정연구센타)
  • Published : 2000.03.01

Abstract

Thermoelectric properties of the $Bi_2(Te_{0.85}Se_{0.15})_3$ alloy, prepared by mechanical alloying and hot pressing, were investigated with the variation of the hot-pressing temperature ranging from $300^{\circ}C$ to $550^{\circ}C$. Contrary to the p-type behavior of single crystal, the hot-pressed $Bi_2(Te_{0.85}Se_{0.15})_3$ alloy exhibited n-type conduction without addition of donor dopant. When the $Bi_2(Te_{0.85}Se_{0.15})_3$ powders were annealed in $(50{\%}\;H_2+50{\%}\;Ar)$ atmosphere, the hot-pressed specimens exhibited a positive Seebeck coefficient due to the reduction of the electron concentration by removal of the oxide layer on the powder surface and annealing-out of the excess Te vacancies. Figure-of-merit of the hot-pressed $Bi_2(Te_{0.85}Se_{0.15})_3$ alloy was improved by hot pressing at temperatures above $450^{\circ}C$, and the maximum value of $1.92{\times}10^{-3}/K$ was obtained for the specimen hot-pressed at $550^{\circ}C$.

기계적 합금화 공정을 이용하여 제조한 $Bi_2(Te_{0.85}Se_{0.15})_3$ 가압소결체의 가압소결온도에 따른 열전특성을 분석하였다. $Bi_2(Te_{0.85}Se_{0.15})_3$ 가압소결체는 $300^{\circ}C$에서 $550^{\circ}C$ 범위의 가압소결온도에 무관하게 n형 전도를 나타내었다. $Bi_2(Te_{0.85}Se_{0.15})$ 합금분말을 (50% $H_2+50%$ Ar) 분위기에서 환원처리시, 분말 표면의 산화층 제거 및 과잉 Te 공격자의 소멸에 기인한 전자 농도의 감소로 가압소결체의 Seebeck 계수가 양의 값으로 변화하였다. $450^{\circ}C$ 이상의 온도에서 가압소결시 가압소결온도의 증가에 따라 $Bi_2(Te_{0.85}Se_{0.15})$ 합금의 성능지수가 증가하였으며, $550^{\circ}C$에서 가압소결시 $1.92{\times}10^{-3}/K$의 최대성능지수를 얻을 수 있었다.

Keywords

References

  1. CRC handbook of Thermoelectrics D.M. Rowe.
  2. J. Solid State Electronics v.15 W.M. Yim;F.D. Rosi
  3. J. Appl. Phys. v.68 I.J. Ohsugi;T. Kojima;I.A. Nishida
  4. Proc. 12th Int. Conf. on Thermoelectrics K. Hasezaki;M. Nishimura;M. Umata;H. Tsukuda;M. Araaoka
  5. Proc. 11th Int. Conf. on Thermoelectrics O.Sh. Gogishvili;I.P. Lavrinenko;S. P. Lalykin;T.M. Melashivili;L.D. Rogovoy
  6. Proc. 12th Int. Conf. on Thermoelectrics F. Fukuda;A. Onodera;H. Haga
  7. J. Kor. Inst. Metals & Mater. v.35 B.Y. Jung;S.E. Nam.;D.B. Hyun;J.D. Shim;T.S. Oh
  8. J. Kor. Inst. Metals & Mater. v.35 H.J. Kim;J.S. Choi;D.B. Hyun;T.S. Oh.
  9. Proc. 12th Int. Conf. on Thermoelectrics A. Yanagitani;S. Nishikawa;Y. Kawai;S. Hayashimoto;N. Itoh;T. Kataoka
  10. Proc. 9th Int. Conf. on Thermoelectrics B.A. Cook;B.J. Beaudry;J.L. Harringa;W.J. Barnett
  11. J. Appl. Phys. v.30 T.C. Harman;J.H. Cahn;M.J. Logan
  12. Ceramic Engineering for Dielectrics(4th. Ed.) K. Okazaki
  13. J. Phys. Chem. Solids v.26 G.R. Miller;C.-Y. Li
  14. J. Phys. Chem. Solids v.47 J. Horak;K. Cermak;L. Koudelka
  15. Adv. Energy Conversion v.1 M.R. LaChance;E.E. Gardner
  16. Proc. 8th Int. Conf. on Thermoelectrics I.J. Ohsugi;T. Kojima;H. Kaibe;I. Nishida
  17. J. Appl. Phys. v.33 J.M. Schultz;J.P. McHugh;W. A. Tiller
  18. Inorg. Mater. v.19 D.M. Gel'fgat;Z.M. Dashevskii
  19. Proc. 8th Int. Conf. on Thermoelectric Energy Conversion H. Kaibe;M. Sakabe;I.J. Ohsugi;I. Nishida
  20. Proc. 14th Int. Conf. on Thermoelectrics G.T. Alekseeva;M.V. Verdernikov;P.P. Konstantinov;V.A. Kutasov;L.V. Luk'yanova
  21. Proc. 7th Int. Conf. on Thermoelectric Energy Conversion H. Imaizumi;H. Yamaguchi;H. Kaibe;I. Nishida
  22. Proc. 12th Int. Conf. on Thermoelectrics K. Nakamura;K. Morikawa;H. Owada;K. Miura;K. Ogawa;I. Nishida