Fabrication of Y-TZP/Ce-TZP Multilayer Composites Using Slip Casting(II)

슬립주입에 의한 Y - TZP/Ce-TZP 다층 복합체의 제조(II)

  • Kim, Min-Ju (Dept.of Materials Science Engineeirng, Pusan National University) ;
  • Lee, Yun-Bok (Dept.of Materials Science Engineeirng, Pusan National University) ;
  • Kim, Yeong-U (Research Institure of Industrial & Technology) ;
  • Jeon, Byeong-Se (Dept. of Advanced Materials Engineering, Kyungnam University) ;
  • Park, Hong-Chae (Dept.of Materials Science Engineeirng, Pusan National University)
  • 김민주 (부산대학교 재료공학부) ;
  • 이윤복 (부산대학교 재료공학부) ;
  • 김영우 (포항산업과학기술연구원) ;
  • 전병세 (경남대학교 신소재공학부) ;
  • 박홍채 (부산대학교 재료공학부)
  • Published : 2000.10.01

Abstract

Three- and five-layer 3Y-YZP/12Ce- TZP composites prepared by a slip casting method have been char­acterized in terms of mechanical properties. The fracture strength of mutilayer c$\alpha$nposites determined in a diametral compression test was 327~534 MPa. Although the indentation strength of the materials was generally reduced with i increasing Vickers indentation load up to 300 N, the damage resistance of multilayer composites was superior com­pared to monolithic layer TZP material. The four-point bend strength of the layered material remained at the values of 620~674 MPa after indentation with a load of 49 N, while that of the monolithic TZP material was 129~339 MPa. The microindentation toughness of the multilayer material was $7.7~13.1\;MPa{\cdot}m^{1/2}$.

3Y-TZP/12Ce-TZP 의 3층 5층 복합체를 슬립주입법으로 제조하고, 그 기계적 성질을 검토하였다. 지름-원반압축시험법으로 구한 다층복합체의 파괴강도는 327~534MPa이었다. Vickers압입하중의 증가(~300N)와 더불어 압입강도는 전반적으로 감소하였으나, 다층물질은 단상물질에 비하여 우수한 손상저항을 나타내었다. 49N의 하중으로 압입후 다층물질의 4점 꺽임강도는 620~674MPa 인데 반하여 단상 물질의 경우는 129~339MPa을 나타내었다. 압자압입에 의한 다층물질의 인서은 $7.7~13.1\;MPa{\cdot}m^{1/2}$ 정도를 나타내었다.

Keywords

References

  1. J. Phys. Chem. v.82 no.2 R.C. Garvie
  2. Am. Ceram. Soc. Bull. v.65 K. Tsukuma
  3. J. Am. Ceram. Soc. v.63 no.1-2 T.K. Gupa
  4. J. Mater. Sci. Lett. v.15 no.6 M.V. Swain
  5. J. Am. Ceram. Soc. v.66 no.9 D.J. Green;F.F. Lamge;M.R. James
  6. J. Am. Ceram. Soc. v.70 no.3 A.V. Virkar;J.L. Huang;R.A. Culter
  7. Science and Technology in Zirconia N. Claussen;M. Ruhle;A.H. Heuer(ed.);L.W. Hobbs(ed.)
  8. J. Am. Ceram. Soc. v.75 no.12 C.J. Russo;M.P. Harmer;H.M. Chan;G.A. Miller
  9. J. Am. Ceram. Soc. v.72 R.M.J. Hannink;M.V. Swain
  10. J. Am. Ceram. Soc. v.72 C.S. Yu;D.K. Shetty
  11. J. Am. Ceram. Soc. v.73 D.B. Marshall
  12. J. Mater. Sci. v.20 K.E. Tsukuma;M. Shimada
  13. J. Am. Ceram. Soc. v.74 D.B. Marshall;J.J. Ratto;F.F. Lange
  14. Nature v.347 W.J. Clegg;K. Kendall;N. McN Alford;T.W. Button;J.D. Birchall
  15. J. Am. Ceram. Soc. v.77 no.8 C.A. Folsom;F.W. Zok;F.F. Lange
  16. J. Am. Ceram. Soc. v.75 no.12 C.J. Russo;M.P. Hammer;H.M. Chan;G.A. Miller
  17. J. Am. Ceram. Soc. v.79 no.1 R. Lakshminarayanan;D.K. Shetty;R.A. Cutler
  18. J. Eur. Ceram. Soc. v.16 no.8 O. Sbaizero;E. Lucchini
  19. J. Am. Ceram. Soc. v.79 no.2 H. Wang;X. Hu
  20. J. Am. Ceram. Soc. v.70 no.10 R.A. Cutler;J.D. Bright;A.V. Virkar;D.K. Shetty
  21. J. Am. Ceram. Soc. v.81 no.5 J. She;S. Scheppokat;R. Janssen;N. Claussen
  22. J. Mater. Sci. v.23 J.E.O. Ovri;T.J. Davies
  23. J. Mater. Sci. Lett. v.1 K. Niihara;R. Morena;D.P.H. Hasselman
  24. Transformation Toughened Ceramics D.J. Green;R.H.J. Hannink;M.V. Swain
  25. 요업화학지 v.33 no.10 이종현;이윤복;김영우;오기동;박흥채
  26. Mater. Res. Stand. v.3 no.4 A. Rudinck;A.R. Hunter;F.C. Holden
  27. J. Mater. Sci. v.27 G.S.A.M. Theunissen;A.J.A. Winnubst;A.J. Burggraaf
  28. Ceram.Trans. J. v.88 J. Wang;M. Rainforth;R. Stevens, Br.