Characteristics of Optical Absorption in ${Al_{0.24}}{Ga_{0.76}}As/GaAs$ Multi-Quantum Wells by a Surface Photovoltage Method

표면 광전압 방법에 의한 ${Al_{0.24}}{Ga_{0.76}}As/GaAs$ 다중 양자우물 구조의 광 흡수 특성

  • Published : 2000.10.01

Abstract

The characteristics of optical absorption in $Al_{0.24}Ga_{0.76}As/GaAs$ multi-quantum wells(MQWs) structure were investigated by using the surface photovoltage(SPV). The Spy features near 1.42 eV showed two overlapping signals. By chemical etching, we found associated with the GaAs substrate and the GaAs cap layer. The Al composition(x=24 %) was determined by Kuech's composition formula. In order to identify the transition energies. the experimentally observed energies were compared with results of the envelope function approximation for a rectangular quantum wells An amplitude variation of the relative Spy intensity from the GaAs substrate, llH, and llL was observed at different light intensities. A variation in the SPY line shape of the transition energies were observed with decreasing tempera­t ture.

$Al_{0.24}Ga_{0.76}As/GaAs$ 다중 양자우물 구조의 고아 흡수 특성을 표면 광전압 방법을 사용하여 연구하였다. SPV 측정결과 1.42eV 부근에서 두 개의 신호가 나탔으며, 이는 화학적 에칭으로 GaAs 기판의 신호와 GaAs 완충층과 관련된 신호임을 확인 할 수 있었다. $Al_{0.24}Ga_{0.76}As$와 관련된 전이 에너지를 관찰하고, Kuech 등이 제안한 조성식을 이용하여 Al 조성(x=24%)을 결정하였다. 그리고 다중 양자우물에서 나타나는 전이 에너지 값들은 envelope-weve function approximation(EFA)로 계산한 이론치와 잘 일치하였다. 입사광의 세기에 따라 광 전압이 선형적으로 변한다는 것을 알 수 있었고, 온도가 감소함에 따른 전이 에너지의 변화를 관찰하였다.

Keywords

References

  1. Appl. Phys. Lett. v.39 W.T. Chang
  2. Appl. Phys. Lett. v.33 R. Dingle;H.L. Stormer;A.C. Gossard;W. Wiegmann
  3. Jpn. J. Appl. Phys. v.26 H. Okamoto
  4. Jpn. J. Appl. Phys. v.23 H. Iwamura;H. Kobataski;H. Okamoto
  5. Phys. Rev. v.B32 P.W. Yu;G.D. Sanders;D.C. Reynolds
  6. J. Appl. Phys. v.79 A. Anedda;M.B. Casu;A. serpi
  7. Appl. Phys. Lett. v.53 B.Y. Hua;E. Fortin;A.P. Roth
  8. Phys. Rev. v.B32 R.C. Moller;A.C. gossard;G.d. Sanders;Y.C. Chang;J.N. schulman
  9. Phys. Rev. v.B34 P. Dawson;K.J. Moore;G. Duggan;H.I. Ralph;C.T.B. Foxon
  10. Phys. Rev. Lett. v.51 J.E. Zucker;A Pinczuk;D.S. Chemla;A.C. Gossard;W. wiegman
  11. solid State Communi. v.102 L. Aigouy;F.H. Pollak;J. Petruzzello;K. Shahzad
  12. J. Appl. Phys. v.77 W. Liu;D. Jiang;Y. Zhang
  13. J. Appl. Phys. v.86 D. Gal;Y. Mastai;Hodes
  14. J. Appl. Phys. v.86 N. Ashkenasy;M. Leibovitch;Y. Rosenwaks;Y. Shapira
  15. Appl. Phys. Lett. v.51 T.F. Kuech;D.J. Wolford;R. Poremski;J.A. Bradley;K.H. Kelleher
  16. Phys. Rev. v.B24 G. Bastard
  17. J. Appl. Phys. v.58 S. Adachi
  18. Phys. Rev. Lett. v.53 D.A.B. Miller;D.S. Chemla;T.C. Damen;A.C. Gossard;W. Wiegmann;T.H. Wood;C.A. Burrus
  19. Phys. Rev. v.B39 B.V. Shanabrook;O.J. Glembocki;D.A. Broide
  20. Phys. Rev. v.B32 D.A.B. Miller;D.S. Chemla;A.C. Gossard;W. Wiegmann;T.H. Wood;C.A. Burrus
  21. Optical Processes in Semiconductors J.I. Pankove
  22. Phys. Rev. v.B35 P. Lautenschlager;M. garriga;S. Logthetidis;M. Cardona
  23. Appl. Phys. Lett. v.53 H. Shen;S.H. Pan;Z. Hang;J. Leng;F.H. Pollak