전기절연재료로서의 EPM/EPDM

이태희
SK 대덕기술원 주임연구원

이규중
SK 대덕기술원 수석연구원

1. 서 론

2. 본 론

2.1 EPDM의 역사

2.2 EPDM의 응용

22 / 테마기획-고분자 절연재료와 설계기술 (V)-전기절연재료로서의 EPM/EPDM
EPM/EPDM은 우수한 물리적 성질 및 내화성, 내오존성, 내후성, 내열성, 전기결연성등에 힘입어 자동차외/내장재, 전기결연재료, 건차재료 방수재 및 각종 산업용 재료로 널리 이용되고 있다(표 1. 참조3). 표 1에서 보는 바와 같이 EPM/EPDM의 수유가 가장 큰 분야는 자동차용 부품제료로 주로 Weather Strip이나 절연재, 내/외 장재 Compound 원료등으로 사용된다. 본고의 초점이 되고 있는 전기결연제료로서의 용도는 전체 용도중 그 규모가 두 번째이며 이는 물론 EPM/EPDM의 우수한 전기 절연성(순수한 EPDM의 상대유전상수 2.4, tan δ 0.0066)을 대변한다고 할 수 있다. 특히 분자내에 불포화기가 없어 내화성이, 내오존성, 내열성이 좋은 점과 매우 낮은 상대유전상수와 소실물이 가진다는 점에 힘입어 XLPE와 함께 전력 케이블외곽재료로 널리 사용되고 있다.

<table>
<thead>
<tr>
<th>분야</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>자동차 부품</td>
<td>42</td>
</tr>
<tr>
<td>전기결연재료</td>
<td>15</td>
</tr>
<tr>
<td>건축용재료</td>
<td>10</td>
</tr>
<tr>
<td>Appliance</td>
<td>10</td>
</tr>
<tr>
<td>산업재</td>
<td>9</td>
</tr>
<tr>
<td>플라스틱 배합재</td>
<td>9</td>
</tr>
<tr>
<td>기타</td>
<td>5</td>
</tr>
</tbody>
</table>

2.3 EPDM의 화학적구조

EPM은 Ethylene과 Propylene 2종류의, 그리고 EPDM은 Ethylene, Propylene 및 제 3의 Diene1,2 3종류의 Monomer가 투질시켜 공중합된 무정형 고분자이다. 중합은 주로 Vanadium을 중심으로 하는 전이금속의 Halide와 Aluminum을 중심으로 하는 유기금속화합물들을 촉매로 하는 전형적인 Ziegler-Natta 중합에 의해 이루어 지며 그 구조는 그림 1과 같다1,2. 구조에서 알 수 있듯이 EPM(Ethylene-Propylene-Methylene Unit)이라는 이름의 "M"이 뜻하는 바는 고분자의 주체가 포화 탄소 사슬로 이루어져 있음을 일컫는 것이다(From ASTM D 1418, EPDM = Ethylene Propylene Diene Methylene Unit). 또는 EPM과 EPDM을 통칭하여 EPR(Ethylene Propylene Rubber)라 부르기도 한다. EPDM의 Diene으로는 ENB(5-Ethylene-2-Norbornene), DCPD(Dicyclopentadiene), HD(1, 4-Hexadiene)등을 주로 이용한다3.

![그림 1. EPM/EPDM의 구조](attachment:그림1.png)
는 점과 비극성이며 무정형이라는 점이 바로 EPM/EPDM의 우수한 내화성, 내열성, 내오존성, 내후성, 전기결연성의 근거인 것이다.

표 2. 황가고 및 파산화물가고의 특징비교

<table>
<thead>
<tr>
<th>방식</th>
<th>장점</th>
<th>단점</th>
</tr>
</thead>
<tbody>
<tr>
<td>황</td>
<td>높은 인장강도, 인쇄감도, 습기, 열 안정성 저하</td>
<td>가황조건 Mild, 낮색</td>
</tr>
<tr>
<td>파산화물</td>
<td>전기적, 열적 안정성</td>
<td>가고조건 Severe, 재생시험성 저하</td>
</tr>
</tbody>
</table>

2.4 EPDM의 특성

EPM/EPDM은 약 -60℃정도에서 유지이온 온도를 가지는 무정형 고분자이며 저온에서도 탄성이 매우 좋은 것으로 알려져 있다. 특히 전달한 바와 같이 분자내에 불포화기가 없으므로 내열성이 매우 좋아 150℃이상 175℃에 이르기까지 사용할 수 있다. 또한 비극성이므로 유전율이 매우 낮고 무정형이어서 전자의 전도가 매우 제한되는 우수한 점연재이다. 표 3에 EPM/EPDM의 일반적인 물리적 성질을 나타내었다. EPM/EPDM의 물리적 성질을 좌우하는 주요한 변수는 분자량, 분자량분포, Ethylene Content, Diene Content 등을 들 수 있는데 특히 전기결연재료로서의 용도에 미치는 영향을 표 4에 나타내었다.

표 3. EPR의 일반적인 물리적 성질

<table>
<thead>
<tr>
<th>항목</th>
<th>수치</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Gravity</td>
<td>0.87</td>
</tr>
<tr>
<td>Color</td>
<td>Translucent off-white</td>
</tr>
<tr>
<td>가교 포</td>
<td></td>
</tr>
<tr>
<td>경도</td>
<td>30A~90A</td>
</tr>
<tr>
<td>인장강도, Mpa</td>
<td>6.9~20.7</td>
</tr>
<tr>
<td>신속, %</td>
<td>100~600</td>
</tr>
<tr>
<td>Compression Set, %</td>
<td>20~60</td>
</tr>
<tr>
<td>가용온도, ℃</td>
<td>-50~150</td>
</tr>
<tr>
<td>Brittle Point, ℃</td>
<td>-50</td>
</tr>
<tr>
<td>채적저항, ohm·cm</td>
<td>10E16~10E17</td>
</tr>
<tr>
<td>유전상수</td>
<td>2.2~3.0</td>
</tr>
</tbody>
</table>

우수한 물리적 성질에 힘입어 EPM/EPDM은 표 1에 나타난 바와 같은 여러 가지 용도를 가지지만 각각의 용도에 맞게 사용하기 위해서는 각각의 용도에 에 맞는 정도의 물리적 성질을 충족 시키고, 가교 반응을 위한 각종 화합물합물들과 무기응용제, 가소 첨가물과의 Compounding 작업이 필요하며 다음 절에서 EPM/EPDM의 Compounding에 대하여 알아보기로 한다.

표 4. EPR의 물성 변수가 전기결연재료로서의 특성에 미치는 영향

<table>
<thead>
<tr>
<th>변수</th>
<th>이익</th>
<th>손실</th>
</tr>
</thead>
<tbody>
<tr>
<td>분자량 상승</td>
<td>인장강도 증가</td>
<td>Mixing이어울림</td>
</tr>
<tr>
<td>총전체 함량 증가</td>
<td>압출 어려움</td>
<td></td>
</tr>
<tr>
<td>가교포정 안정도 증가</td>
<td>총전체 증강에 따른 전기적 특성 저하</td>
<td></td>
</tr>
<tr>
<td>Ethylene Content</td>
<td>인장강도 증가</td>
<td>경도 증가</td>
</tr>
<tr>
<td>총량</td>
<td>총전체 함량 증가</td>
<td>Set 성질 저하</td>
</tr>
<tr>
<td>pellets지능</td>
<td>탄성저하</td>
<td></td>
</tr>
<tr>
<td>파산화물 가교 용이</td>
<td>저온시험성 저하</td>
<td></td>
</tr>
<tr>
<td>Diene Content</td>
<td>Peroxide가교 용이</td>
<td>열안정성 저하</td>
</tr>
<tr>
<td>총량</td>
<td>가교포증</td>
<td>신음 감소</td>
</tr>
<tr>
<td>분자량분포</td>
<td>Die Swell 작용</td>
<td>Mixing이어울림</td>
</tr>
<tr>
<td>총량</td>
<td>가교포도 브라질</td>
<td>물리적 성질 향상</td>
</tr>
<tr>
<td>총전체/가소 첨가중량</td>
<td>총전체/가소 첨가중량</td>
<td></td>
</tr>
<tr>
<td>분자량분포</td>
<td>가공성 향상</td>
<td>Die Swell내어짐</td>
</tr>
<tr>
<td>총량</td>
<td>가교포도 저하</td>
<td></td>
</tr>
</tbody>
</table>

2.5 EPM/EPDM의 Compounding 기술

Compounding이란 충전체, 착색제, 안정제, 가공 조제, 가교제, 안료등의 첨가제와 Raw Rubber를 혼합하여 유용한 물질로 만드는 기술을 말한다. 이러한 Compounding 작업으로 만들어진 유용한 고무 물질을 Compound라고 하며 EPM/EPDM Compounding에 포함되는 주요한 첨가제들은 EPM/EPDM Raw Rubber, Filler/Reinforcing Agent(s), Plasticizer, Antioxidants/Stabilizers.
Flame Retardants
Process Aids
Ion Scavenger
Coupling Agent
Curing Coagent
Curative

등이 있다. 용도와 적절한 가격을 고려하여 위의 첨가제들을 적절히 선택하여 원하는 물리적 또는 전기적 성질을 얻어야 한다. 특히 전기질연재료에서는 표 2에 나타낸 바와 같이 점유가나 고온 열화등의 이유로 화가 교가 주로 절연용으로 사용되는 반면 중/고전압 전기 절연재료로서의 응용에서는 주로 파산화물 가교를 사용하게 된다. 이때 가교 반응의 속도가 중요한데 표 5는 각각의 첨가제에 따른 파산화물 가교반응의 속도 및 상태를 정리한 것이다. 가교를 위한 파산화물로는 Dicumyl Peroxide, 1, 4-bis(t-Butylperoxy-isopropyl)benzene등을 많이 이용한다(그림 2 참조).

<table>
<thead>
<tr>
<th>첨가제</th>
<th>가교속도</th>
<th>Cure State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxide Type</td>
<td>증가 또는 감소</td>
<td>증가 또는 감소</td>
</tr>
<tr>
<td>Peroxide Amount</td>
<td>-</td>
<td>증가 또는 감소</td>
</tr>
<tr>
<td>가소계</td>
<td>-</td>
<td>감소</td>
</tr>
<tr>
<td>산화안정제</td>
<td>-</td>
<td>감소</td>
</tr>
<tr>
<td>중전체</td>
<td>약간 감소</td>
<td>감소</td>
</tr>
<tr>
<td>Coupling Agent</td>
<td>-</td>
<td>현저히 증가</td>
</tr>
<tr>
<td>Sulfur</td>
<td>-</td>
<td>감소</td>
</tr>
</tbody>
</table>

그림 2. Dicumyl Peroxide, 1, 4-bis(t-Butylperoxy-isopropyl)benzene

표 5. 각종 첨가제에 따른 파산화물 가교반응의 속도 및 상태

Compound에 포함되는 첨가제 중 Filler는, EPM/EPDM을 자동차용 부품이나 전기재료, 또는 산업용 재료로 사용하는 경우와 달리 전기 절연 재료로 사용하는 경우에는 가장 흔히 사용하는 Carbon Black 대신 절연용으로는 Water-Washed Hard Clay, Calcium Carbonate, Barium Sulfate, 여러 가지 종류의 합성 silica등을 사용하고, 고전압용으로는 Calcined Clay 또는 Untreated clay, Talc등을 사용한다. 전기질연재료에서 Filler를 중심으로 한 첨가제의 역활은 장기 내열성 정상에 가장 중요한 역할을 하는 요소이므로 신중히 선택하여 사용해야 할 것이다.

특히 Treated Calcined Clay는 Untreated Clacined Clay에 비해 초기 및 Aging 후 물성이 우수하고 전기적 안정성이 뛰어나서 많이 사용된다(표 6). Talc의 경우는 처리된 상태이더라도 Clay

\[
\begin{align*}
\text{CH}_3 & \quad \text{C} \quad \text{O} \quad \text{O} \\
\text{Ph} & \quad \text{CH}_3
\end{align*}
\]

Dicumyl Peroxide

\[
\begin{align*}
\text{CH}_3 & \quad \text{C} \quad \text{O} \quad \text{C} \\
\text{CH}_3 & \quad \text{Ph}
\end{align*}
\]

1,4-bis(t-Butylperoxy-isopropyl)benzene

표 6. Clay 종류에 따른 EPR Compound의 물성

<table>
<thead>
<tr>
<th>물성</th>
<th>With Untreated Calcined Clay</th>
<th>With treated Calcined Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Modulus, Mpa</td>
<td>3.9</td>
<td>5.4</td>
</tr>
<tr>
<td>200% Modulus, Mpa</td>
<td>4.4</td>
<td>8.3</td>
</tr>
<tr>
<td>Tensile Strength, Mpa</td>
<td>4.8</td>
<td>8.3</td>
</tr>
<tr>
<td>Elongation, %</td>
<td>370</td>
<td>200</td>
</tr>
<tr>
<td>After Oven Aging, 150&degC for 7일</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Strength, Mpa</td>
<td>143</td>
<td>98</td>
</tr>
<tr>
<td>Elongation, % of Orig.</td>
<td>54</td>
<td>95</td>
</tr>
</tbody>
</table>

Dielectric Constant, 1kHz in 90°C Water

<table>
<thead>
<tr>
<th>Property</th>
<th>Original</th>
<th>1주일 후</th>
<th>2주일 후</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>3.45</td>
<td>4.30</td>
<td>4.09</td>
</tr>
<tr>
<td>% Power Fatter, 90&degC Water at 1kHz</td>
<td>0.52</td>
<td>0.50</td>
<td>0.44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Original</th>
<th>1주일 후</th>
<th>2주일 후</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>8.98</td>
<td>8.98</td>
<td>8.98</td>
</tr>
<tr>
<td>% Power Fatter, 90&degC Water at 1kHz</td>
<td>0.52</td>
<td>0.50</td>
<td>0.44</td>
</tr>
</tbody>
</table>
에 비해 전기적으로 불안정한 Compound를 만들며 Clay에 비해 젤프 낮은 전압응용에서 이용된다. Clay나 Talc와 같이 물성을 보강하기 위한 증전체 이외에 EPR을 전기절연재료로 응용할 때 트레킹을 방지하기 위한 무기 첨가재로 수산화 알루미늄이 있다. 수산화 알루미늄은 원래 무독난연성 콤폰드의 첨가재로 많이 이용되고 있으나 1950년대 후반에 내 트레킹성에 효과적인 사실이 알려지면서 물리적 예상 및 수산화 알루미늄은 가공, 가공이 아닌 끌어내기를 방지할 목적으로 첨가되어야 한다(아래 반응식 참조).

\[
2\text{Al(OH)}_3 \xrightarrow{200\text{℃}} \text{Al}_2\text{O}_3 + 3\text{H}_2\text{O} \quad \text{71.7 kcal}
\]

\[
\text{C} + \text{H}_2\text{O} + \text{O}_2 \xrightarrow{\text{Al}_2\text{O}_3} \text{CO}_2 + \text{CO} + \ldots
\]

한편, Rubber의 분자가 높아 Filler의 충전량을 높일 수 있는 경우에는 높은 분자량 및 충전량으로 인하여 저하된 가공성을 향상하기 위하여 Plasticizer를 처방한다. 그러나 Plasticizer의 사용은 전기절연성을 크게 저하시키므로 가공질의 전기절
연재료에는 사용하지 않는 것이 바람직하다.

2.6 EPM/EPDM의 전기적 응용

EPM/EPDM의 Electrical Application은 EPM/EPDM의 낮은 유전율과 손실율, 그리고 높은 제격처리를 이용한 절연재료분야이며 주로:
- Power Cable
- Flexible Cords
- Control and Instrument Wire
- Automotive Ignition Wire
- Appliance Wire
- Motor Lead Wire
- Mining Cable
- Molded Electrical Accessories

등의 용도로 사용되고 전전한 바와 같이 각각의 용도 별로 요구 하는 성질을 만족시키는 Compound를 개발하여 적응하게 된다.

EPM/EPDM은 전력용 Cable의 경우 5~35 kV, 에자의 경우 765kV까지 사용이 가능한4, 9 우수한 전
기 절연 재료(순수한 EPDM의 상대유전상수 2.4,
\[\tan \delta \leq 0.0006 \])이며 고분자재료 중 가장 우수한 절연재료 중 하나로 알려진 XLPE와 비교하여 다음과 같은 특성을 가진다.

- 전기적 파괴강도가 XLPE와 동등함.
- 내트레킹성, 내고무성이 우수함.
- 연결성이 XLPE와 같이 연속 사용시 최고허용은 도 90℃임.
- XLPE에 비해 물결특성이 우수함.

특히 열적 안정성이 뛰어나 150℃에서도 1000시간 이상 Electric Strength가 50% 유지된다는 보고도 있다. 전층된 바와 같이 EPM/EPDM의 우수한 전기 절
연성은 XLPE와 함께 전력용 케이블 파복으로 가장 널리 사용되는 고분자층의 하나가 되게 하였으며 EPDM의 가장 중요한 전기 절연재료 응용 분야이다 (표 7 참조). EPR의 비결정성은 전기절연성과 함
께 장기 내열 안정성을 가지게 하는 중요한 이유이
다. 내열성은 특히 전력용 케이블 용도에서 중요하
다. 그것은 전력용 케이블 파복재가 고압에서의 전
기장에 의한 발열을 견딜 수 있는 우수한 내열성을 가질까 하기 때문이다. 전력용 케이블을 설계할 때에는 사용할 케이블의 용전용량, 붐따라, 포일초
건과 경제적 기술적측면을 고려하여야 하는데 그 중
에서 표 7에 나타낸 바와 같이 EP고무의 경우 주로
중/저전용 Cable에 사용된다.

<table>
<thead>
<tr>
<th>표 7. 전력용 케이블의 파복재료</th>
</tr>
</thead>
<tbody>
<tr>
<td>외부전압</td>
</tr>
<tr>
<td>187kV이상</td>
</tr>
<tr>
<td>66~154kV</td>
</tr>
<tr>
<td>11~33kV</td>
</tr>
<tr>
<td>3.3~6.6kV</td>
</tr>
<tr>
<td>600V</td>
</tr>
</tbody>
</table>

전력용 케이블을 비롯한 전기절연재료의 용도를 고려할 때 반드시 고려되는 부분이 트레킹 및 Water
Treeing인데 트레킹이란 절연체 표면에 도포로가 형
성되어 비가역적인 고분자 재료의 열화가 생기는 것
을 말하며 이에 의해 재료는 전도성이 되는 현상을
말한다. 이는 표면이 오염되고 있음을 때 전기적 아
크에 의해 재료의 국부적인 열화가 일어나 발생하는
것이며 트레킹은 모든 절연과 연결될 때까지 무로
양으로 진행되어 결국 파괴를 일으키는데 이를
Water-Treering이라고 한다.
Water Tree는 재료 외부로부터 발생하는 경우와 재료 내부에서 발생하는 경우가 있는데 그 발생은 첫째, 불규칙한 전기장 하에서 절연체로 물분자 침투가 일어나고 두째, 침투한 물분자의 전기분해로 생성된 반응성 산소가 절연체를 열화시키는 산화반응을 따라 일어나게 된다. 이러한 Water-Treeing을 예계하기 위해서는 전력용 케이블의 반도전층을 보다 평평하게 하거나 절연체의 경우에는 이물질, Void등의 foreign body와 수분의 유입을 최소화하도록 해야 한다. 또는 극성을 맞는 EVA를 소량 첨가하거나 VLDPE를 첨가해 주는 방법도 있다. 그러나 기본적으로 Water Tree는 그 발생기구에 Weather Oxidation, Stress Cracking, Supersaturation, Diffusion등이 함께 포함되는 매우 복합한 현상이므로 보다 복합적인 연구가 필요한 분야이다.

3. 결 론

살펴본 바와 같이 EPM/EPDM의 우수한 전기절연성에 내열성 및 내교란성등을 가지므로 전기절연재료로서 널리 사용되고 있다. 그러나 XLPE에 비해 고압용용용에서는 사용되지 못하는 단점을 가지 고 있으므로 향후에는 우수한 Compound기술을 바탕으로 한 초고압용 절연재료로서의 용용을 기대해 본다.

참 고 문 헌