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ABSTRACT

Plastic molding designers are frequently faced with optimizing multiple defects in injection molded parts.
These defects are usually in conflict with each other, and thus a tradeoff needs to be made to reach a final
compromised solution. In this study, an automated injection molding design methodology has been developed to
optimize multiple defects of injection molded parts. Two features of the proposed methodology are as follows:
one is to apply the utility theory to transform the original multiple objective optimization problem into single
objective optimization problem with utility as objective function, the other is an implementation of a direct
search-based injection molding optimization procedure with automated consideration of process variation. The
modified complex method is used as a general optimization tool in this research. The developed methodology
was applied to an actual molding design and the results showed that the methodology was useful through the
CAE simulation using a commercial injection molding software package. Applied to production, this study will
be of immense value to industry in reducing the product development time and enhancing the product quality.
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through the complex multi-dimensional and nonlinear

1. Introduction relationships”. In  this multi-dimensional  and
nonlinear design domain, the design procedure is
1.1 Objective multifaceted and thus a number of technically
The injection molding process, carried out by a feasible design solutions may coexist for the same
consecutive  five-stage with plastication, filling, application. Moreover, designers are frequently faced
packing, cooling, and ejection, is one of the most with multiple defects in injection molded parts. These
commonly used methods of processing polymersm_ defects are usually in conflict with each other, and
This process is a complex but highly efficient means thus a tradeoff should be made to obtain a
of producing a wide variety of three-dimensional compromised solution. The design difficulty is
thermoplastic parts in a large production volume. further increased with the addition of process
Many parts manufactured by injection molding variation that is inherently inevitable. Since the
suffer from a wide range of defects. These defects variation of process variables induces variation of
may include warpage, shrinkage, weld and meld rheological and thermal behavior of the melt and
lines, flow mark, flash, sink mark, and void!'l hence change the filling and postfilling characteristics,
However, the design against defects in injection the process variation can result in significant
molded parts is very difficult. Molded part quality quality variation in the molded part””. Due to these
is related to molding parameters of the design space difficulties, traditional efforts for injection molding
such as material, mold, part, and process conditions, design focus on a trial-and-error approach.
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Currently, injection molding CAE simulation is
widely accepted as a design tool for predicting the
defects in molded parts without actually fabricating a
mold. However, the contemporary CAE simulation
requires the mold designer still to run the simulation,
perform the design evaluation, and redesign based on
experience, until a satisfactory design is obtained.
This manual design process appears ineffective and
does not guarantee the optimal design solution and so
has led to an increasing interest in the automated
injection molding design.

The objective of this study is to develop a
methodology robust
solutions automatically, minimizing the conflicting

to obtain optimal design
multiple defects in injection molded parts. In this
study, a combined consideration of optimality and
robustness of design solution is of great importance
because the injection molding process inherently has
significant process variability as described earlier.
The optimal robust solution is defined as a solution
with possible highest functional value and lowest
deviation against this value.

The significance of the developed methodology is
the synthesis of a computer simulation of injection

molding process, a multiple objective optimization

technique, Taguchi method, and a  direct
search-based optimization scheme into a monolitic
part quality system. As a multiple objective

optimization technique, a utility theory is introduced
that provides an effective means to achieve the
designer's subjective preferences for the conflicting
multiple defects in molded parts and a tradeoff
between the part defects in order to obtain a desired
optimal solution. By implementing this theory, a
design, called
desirability, is obtained, which is regarded as the

performance of a utility, or
objective function value to be optimized in the
methodology. In addition, a performance measure
called signal to noise(S/N) ratio®, which s
proposed by Taguchim], is incorporated in the
methodology to select the optimal robust design that
aims to meet the possible highest objective function
value, or optimality, but to minimize the expected
variability in the value, or robustness. Furthermore,
a modified complex method based on direct search
and implemented to

procedure is developed

automatically search for the optimal robust solutions
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in design space.

the purpose of applying the proposed
methodology to an actual injection molding design,
the Cavallero's capacitor can partm was chosen for

For

the warpage and weld line optimization. The results
showed that the methodology was useful through the
CAE
molding software package. Applied to production,
this research will be of immense value to industry

simulation wusing a commercial injection

in reducing the product development time and

enhancing the product quality.

1.2 Related work
Recent

defects

extensively carried out

researches in the optimization of the
injection molded parts have been
23631 pandelidis and Zou™

presented a method to solve an injection molding

in

problem using an optimization approach. They used
the sequential unconstrained minimization technique
(SUMT) integrated with flow simulation software.
The the
temperature difference term, an overpack term and a

objective function was sum of a
frictional heating term with an weighting factor.
Kim® described a method for optimizing molding
conditions, which consist of temperature difference,
melt temperature, and filling time, based on the
results from flow simulation. He used the genetic
algorithm, as a optimization tool. However, neither

of Pandelidis etc.®! and Kim"™ took into account the

" packing and cooling process in the optimization

process. Lee and Kim'"?!

the part warpage using the concept of deliberately
varying part wall thicknesses. In that research, the

made an attempt to reduce

wall thicknesses were optimized first, and then the
process conditions were optimized, based on the

U3 showed

modified complex method. Lee and Kim
thicknesses within dimensional
the part

varying wall

that varying wall
tolerances could considerably reduce
warpage. They that the
thickness design model obtained by Taguchi method
had better warpage characteristics, compared with
Yao and

showed

constant wall thickness design model.
Kim!'¥ developed an automated design methodology
for minimization of weld lines by optimizing the
part and mold design. A combined implementation

of the complex method and injection molding
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simulation was done to reduce and relocate the weld

line.

2. Multiple objective optimization techniques

As described in the section 1.1, multiple defects
in injection molded parts are usually in conflict
with each other, and thus a tradeoff should be made
to find a compromised solution. Hence, a problem
of optimizing in

such multiple defects injection

molded parts belongs to the multiple objective
optimization problem.

Multiple objective optimization techniques can be
broadly
preference based methods

have

classified into generating methods and

(13.16] Generating methods
the

non-inferior (Pareto-optimal) or an approximation of

been developed to enumerate exact
it. However, a major drawback of all the methods
is that most realistic problems are too large to
allow the exact non-inferior set to be found and,
even if it were generated, the set would include too
many alternatives for the designer's consideration.
Preference based methods, on the other hand,
attempt to quantify the designer's preference for
each criterion and use this associated information to
obtain a single super criterion that results in a
single optimal preference based design. The utility
theory is such a method widely used in decision
analysis in engineering design. Originally devised for
economic
purposes,

analytical

applications and later developed for design
the
method for obtaining the utility, or the

utility theory provides a formal
goodness,
the better"

conditions of uncertainty as well as the designer to

of a design with the rule of "the larger

07 This approach permits design to pend

enter his own subjective preferences into the design
problem in a quantitative fashion. Thus it simplifies
decisions such as making complex tradeoffs among
conflicting attributes. Recent works showing its
potential usefulness to mechanical design can be
[15,18,19].  With

backgrounds, the utility theory is used in this study

found in literatures these
to optimize the conflicting defects, or attributes, in
injection molded parts. By implementing the utility
theory, the multiattribute utility function that will

provide a utility for overall design characterized by
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multiple attributes is developed. This utility is a
single performance of a design with all attributes
considered and it is regarded as the objective
function value to be optimized in the methodology.
In the following section,

the multiattribute

a new procedure for
determining utility function s

developed and presented.

3. Determination of utility function

The utility function can be defined as a function
describing the utility of a design alternative which
characterized by multiple attribute values, whose
utility has a numerical value between 0 and 1
according to the designer's preference”s’”‘w].

The (MAU) is
calculated from equation (1) derived by Keeney and

overall multiattribute utility
Raiffa"”, given conditions of utility independence of
Utility  independence that the

degree of nonlinearity of utility over each attribute

attributes. means

range is not affected by other attribute levels.

v =% [ B@eueo+1] -1]

where
U(x) = MAU of an alternative characterized by
attribute vector x= (X1, X3, ..., %),
x; = performance level of attribute 4,
Ufx;) = single attribute utility (S4U) function for
attribute 4,
i =1, 2,...,n attributes,
k; = single attribute scaling constant, and

normalizing constant, derived from

1+ K= ;:[1(1 + Kk @

General assumptions on the utility independence
are appropriate in many realistic problems, and they
are operationally evident in practicem]. The MAU
function for the simplest case of the problem with
two attributes, which are utility independent, is

presented from the equation (1) and (2) as follows:



Jong Cheon Park and Byung H. Kim: International Journal of the KSPE, Vol 1, No. 1

MAU=k - Utk Uy +t(1~ky—ky) - Uy - Uy
3

In order to evaluate the MAU function of the
equation (1) or (3), the MAU function variables, i.e.,

SAU functions for each attribute and scaling
constants should be defined first.
The conventional development of the utility

function for engineering design applications often
requires two major steps of first determining SAU
functions, and using this information as the basis to
build the MAU function. With utility values of
Ups=1 defined to the best preference for an

attribute function and U,,,=0 for the least

preference, the SAU is developed to describe the
designer's compromise between two extremes based
on one's priority reflected answers on the lottery

(31719 the combination of the

questions
assessed SAU's by scaling constants yields the MAU.
Here, the
preferences on attributes and can be acquired based
on scaling constant lottery questions“s’”'w'. With
such an intuitive approach, however, preference data
are not usually provided by the designer in a

Finally,

scaling constants reflect designer's

consistent way due to a lack of precise knowledge
the of the
and to  considerable

regarding gradient directions value
functions thus  subjected
preference errors'® . Therefore, there exists a need
to provide an efficient measurement technique
assisting the designer in identifying and eliminating
any inconsistent preference information, and finally
in obtaining the MAU function with more accurate
preference reflection among attributes.
MAU function, a new
the MAU function
variables, i.e., all the variables defining SAU's and
scaling constants, is established in this. study. A

feature of this procedure includes an integration of a

In order to obtain the

procedure for determining

preference learning process based on the Analytic
(4HPy™,
technique and its employment in the estimation of
those variables. The AHP, developed by Satty[m, is
a decision-aiding method which aims at quantifying
priorities a given set of design
alternatives on a ratio scale®™. The method links the

Hierarchy  Process an  optimization

relative for
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design alternatives to a hierarchy of attributes and
the
comparisons of the attributes at each level of the

elicits  from designer a set of pairwise
hierarchy. These pairwise comparisons are used to
compute relative weights of the attributes. After
synthesized  these weights,
aggregated up the hierarchy to obtain a rank of the
of the Fig. 1

represents a sample hierarchy model of evaluating

relative they are

preferential ~ order alternatives.

the alternatives. More detailed informations of the

AHP are presented in literatures [21,22].

! Best alternative

. Attribute ZJ

r h -
| Attribute 3 1 | Attributed |
-1

-

I Attribute 1}

———d

[ - I o ) -
| Alternative A Jl { Alternative B | I.F Alternative C
i S o SR

Fig. 1 Sample AHP model for three alternatives.

Along with the equation (3), the procedure for
evaluating the AMAU function in this research can be
explained as follows:

[Step 1] Model the function form to employ the
SAU function of attributes and its variables. Among
the several forms of SAU functions for attributes

23 :
CUI’VG[ ! 18

commonly used in practice, Bezier
chosen in this research because of its generality and
the
preference. Mathematically, for n+/ control points,
the defined by

polynomial of degree n:

potential to  reflect designer's  nonlinear

Bezier curve is the following

P)= 3 sotpr w1-0""P, @)

=0 i1 (n
where u is the parameter, P(z) any point on the
curve, and P; the control point. Fig. 2 shows an

example of cubic Bezier curve used in this study as
a form of the SAU function. In the figure, x; and

%3 denote the best preferred value and the worst
value of the attribute X, respectively, then [xg,x3]

represents the overall acceptable design space. The
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design space is given through Taguchi's orthogonal
array based experiments and designer's judgements.

Here, the end control points, P, and P;, are fixed

at Upg=1 and U,,,=0, respectively, and hence

the shape of curve is controlled by only the interior
points, P, and P,. However, we intend to determine

the shape of curve using only the y-coordinate of
the interior points, while setting the x-coordinates at

constant attribute values, x, and x, respectively,

in the overall acceptable design space. Coordinates,

x, and x,, are selected such that they are located

with the same interval in the overall acceptable
design space. For another attribute, the form of the
SAU function can be defined through a procedure
similar to the above. Therefore, the MAU function
for uniquely defined by
unknowns, i.e., y-coordinates of the interior control

two attributes is six

points to reflect each SAU function and two scaling

constants.

Y =U(X)

1.0

0.0 L X

X:

L
Xo X1

Fig. 2 Example of Bezier curve of degree 3.

[Step 2] Generate a set of non-inferior design
alternatives given in form of the combination of
multiple attribute values, which will be later ranked
through the AHP. To
approximation accuracy

ensure a fairly good

in the overall acceptable
design space, design alternatives are selected such
that their attribute values are located in the overall
acceptable design space as uniformly as possible.
Also, the number of alternatives to be chosen is
this
accordingly

constrained. In problem, there are six

unknowns, and at least seven

non-inferior design alternatives are needed.
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[Step 3] Apply the AHP to the selected design
alternatives, and rank the preferential order of the
alternatives.

[Step 4] The MAU function variables are optimized
using an optimization technique. With the ranked
results, the MAU function variables are optimized at
a time in such a way that the rank obtained from
the calculation of the equation (3) for the selected
design alternatives coincides with the rank of same
the AHP. the
optimization process, a preference order of any two

alternatives resulted from In
design alternatives, A and B, is realized when the

following condition is satisfied:

|MAU(A) — MAU(B)| = § 5)
where & is a small positive constant, called
indifference level, defining the hardness of the

comparison relationship.

4. Realization of the optimality and robustness

In optimization of the injection molding process,
of
important since the

a combined consideration optimality and

robustness is very injection
molding process inherently has significant process
variability all the time even though the process
conditions are tightly controlled by sophisticated
devices during the molding operation. Optimality
means the accessibility of the objective response to
the target value, and robustness the sensitivity of
the objective response to the uncontrollable variation
of the process. robust
solution is defined as a solution with the possible

highest functional value and the lowest deviation

Accordingly, the optimal

against this value. To realize the optimality and
robustmess of a design, the Taguchi method®Y is
this  study,
technique to make use of the orthogonal arrays and
signal to noise (S/N) ratio analysis. To perform the

Taguchi design, appropriate orthogonal arrays for the

employed in which is a statistical

design factors that are controllable or/and for the
noise factors that are uncontrollable must be defined
first.  Orthogonal
experimental plans to obtain more information with

arrays provide guidelines on

less experiments for a given set of factors. In this
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work, the noise array, which is orthogonal array for

the noise factors, is constructed to model and
simulate variations of the wuncontrollable process
variables around the nominal process setup values of

current design. Fig. 3 shows an L, noise array, as
a sample array for explanation. In the array, R, to
R, represent four different noise factor settings,
while the columns represent the noise factors. Each
array entry is level 1 or 2 which corresponds to the
or upper limit of the noise
respectively. For the current design,
factor settings in the noise array are evaluated to

lower factors,

four noise

make a total of four replications.

Noise Factors R,

Run | Ny | N2 | N3 *

R, | 1|11 \}:1 C(;‘ersri;‘: R,
Ro|[1]|2]2 o °
/2112 XX, X))
Re {21211 l:’

Fig. 3 Noise array (L,) and its experiments for

the current design.

of
of robustness

the
may

In practice, meanwhile, improvement
optimality and
conflict with each other, and thus a tradeoff needs
to be made between these two attributes. This
problem is simplified by introducing the Taguchi's

S/N ratio that represents both function improvement

improvement

and deviation minimization. By using the S/N ratio,
the
maximization problem. Among the common types of

problem changes to a single criterion
S/N ratios, the larger-the better type is employed in
the design desirability is
maximized when the MAU is also maximized. The
S/N ratio of the larger-the better type is calculated

as follows:

this research because

3

S/IN,=—10 log{ 6)

5]

Vi
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where y; is the ith response, ie., MAU, to the

process variation with the current design, and #

the number of replications given by the noise
orthogonal array.

As the S/N ratio gets larger, the mean of function
values gets larger but the deviation of function

value around the mean smallerp"‘];

in other words,
optimality is improved and robustness is minimized.
Correspondingly, the design with the largest S/N
ratio of the MAU is required to be searched in the
design space using an appropriate search algorithm
to choose it as the best optimal robust design

solution.
5. Automatic search of optimal robust design

A modified complex method (MCM) based on the
direct search scheme is implemented as a tool for
automated search of optimal robust design solution.
This method provides solutions to many practical
engineering problems where derivative information is

calculate. The
[24], starts with the simplex,
the vertices of which consist of randomly generated
2n trial points, where » is the number of design
The mechanism used to search for the
minimum is based on a distortion of the simplex,
by which the point with the highest function value
is expanded toward the centroid of the remaining

relatively expensive to complex

method, proposed by Box

variables.

points, so as to generate a new design point. The
new point is tested for feasibility and acceptability.
not acceptable, the point is
retracted half the the
centroid of the current set of points until a newly

If the point is

sequentially distance to
generated point is acceptable. This expansion and
retraction process is repeated until certain stop
satisfied. The of the

simplest case of the complex method with two

conditions are topology
design variables is illustrated in Fig. 4. The process
to automatically search for optimal robust design
solution using the modified complex method in this
study is presented by the following, where the
symbol * stands for modifications to the complex
method:

[Step
extreme values or levels are defined. As such, the

1] Design factors, noise factors, and their
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Worst point
Q

New point

Fig. 4 Topology of the complex method.

overall design space, where optimal robust design
solution is searched, is defined by specifying the
lower and upper limit of the design factors. And
the extent of the variations of the noise factors is
defined by their levels.

[Step 2] Initial design points C, (p=1,2,...,2n)
are generated at random.

[Step 3] At each design point, the S/N ratio is
calculated with the MAU's obtained by evaluating
the settings in the noise array and the equation (6).

These S/N ratios correspond to the objective
function at each design point, f(p=1,2,...,2n).
[Step 4] Among 2n design points, C, with the

lowest (or the worst) function value f,, is selected.
[Step 5] Calculate the centroid C, of the remaining
points and the new point C, with the function

value f, as follows:

C,=C.,+ta(C.— Cp) (N
where ¢ is reflection factor. Box** recommended
the use of ¢=1.3.

(a) * If C, is feasible and f£,{f,, retract C, half

the distance to the centroid C,.. It continues until

1> f,, for the complex method. However, this is an

impractical and time-consuming process, due to
extensive computing time required for the
simulation. Based on numerical experiments, we

assume that the functional evaluations at up to four
trial points in the retraction procedure are sufficient.

If it is still true that f,<f,, then let C.= C,, and
f.= fm Otherwise, go to step 6.

(b) If C, is feasible and f£,>f,, then replace C,
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by C,,. Go to step 6.

(c) * If C, is not feasible, C, is retracted toward
the centroid with a retraction step of 0.95 times a;
@=10.952, until

trial points can be searched on the same retraction

C, is feasible. In doing so, the

track.

[Step 6] Check the stop condition imposed to
properly terminate the search process. If the
condition is satisfied, terminate the procedure.

Otherwise, go to step 4. For the present study, the
maximum number of function evaluations is used to
stop unexpected excessive iteration in the search

process.

6. Case study

can?

The Cavallero's capacitor was used to
demonstrate the proposed methodology, aided by the
C-MOLD™  injection molding software package.
PP/HUNTSMAN CHEM/P4-011, tool steel, and water
the polymer

material, and coolant, respectively. The part used

are employed as material, mold
here is identical to the one considered previously by
Yao', in Fig. 5 and Table 1, the
original design of the part had the weld line and
warpage the of 155mm

accompanied by air trap and the warpage of

As shown

problem: weld line

0.52mm. In particular, since the weld line caused an

unacceptable esthetic problem, Yao® made an

attempt to minimize the weld line by optimizing

Fig. 5 3-D view of the capacitor can, in which X
is the gate location located on the line AB

and L the weld line length.
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Table 1 Results of the original design for the can.

(unit: mm)
Design Gate Experimentation
location X | weld line Warpage
Original 35 15.5 0.52

Fig. 6 Comparisons of part quality between the
original design (1) and the design optimized
by Yao (2) for the can'”.

Table 2 Results of the design optimized by Yao for

the can.
(unit: mm)
Design Gate Simulation Experimentation
location X | Weld Weld
_ line Warpage line Warpage
Optimized 11.5 0.0 0.664 0.0 0.70

only the gate location X and by remaining both part
thickness (=/.524mm) and process variables as the
original design values. the weld line
including air trap was completely eliminated by

As a result,

using the optimized gate location, X=11.5mm, as
shown in Fig. 6 and Table 2; on the contrary, the
warpage was more increased to 0.70mm from
0.52mm. This indicates that the weld line and the
warpage in this part conflict with each other, which
provides the proposed
methodology to optimizing them simultaneously. Fig.
7 represents a function chosen in both designs to

a necessity of applying

evaluate the weld line and the warpage for the can.

The methodology starts with determining the MAU
function of the weld line and warpage in the part.
Based on the assumption that the weld line and the
warpage of the part are utility independent, the
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E(428)
B(107) A~ -
H(218) H(218) D(537)
Weld line length Warpage size
=} (the distances between = —(%b)— —-c
the corresponding nodes)
(@ (b)

Fig. 7 Evaluation function of the weld line(a) and
warpage(b) for the the
numbers parentheses node

in  which
the

can,
in are
numbers on the real mesh model.

equation (3) was employed as the MAU function
form, and the Bezier curve of degree 3 was adopted
as the form of each S4U function. Six unknowns,
ie, PPy, Q, @,k and k,, of the MAU function
was optimized in such a way that the preference
rank obtained from the calculation of the equation
(3) for seclected design alternatives coincides with
the rank resulted from the AHP. Table 3 represents
a set of non-inferior design alternatives selected for
the AHP and the rank result of preference order of
the alternatives. Table 4 shows the MAU function
variables 8=0.0/, and Fig. 8
illustrates the SAU function curves configurated for

optimized with

the weld line and the warpage.

Next, an experiment plan, such as the choice of
design factors and noise factors and the definition
of their extreme values or levels, is made. In the
current research, to deal with the design space
including part design, mold design and process
conditions, the factors such as gate location X, side
wall thickness Thyw, top and bottom wall thickness
Thipabouom, fill time s, hold time tuu, postfill time
Lpostfills Tmets
Teootarr, and pack profile percent P, are considered
the To identify
significant design factors on the warpage or the
weld line of the part among the candidate design

melt temperature coolant temperature

as candidate design factors.

factors, the L, orthogonal array based experiment
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Yi=U(Xy)
4

1.0

0.0 + X;(weld line)

(mm)

1 1
0.0 120 240 36.0

(a) For the weld line

Ye=U(X)

b

10

0.0 ) i
0.0 04 0.8

» X;(warpage
1.2 ((nm) )

(b) For the warpage
Fig. 8 SAU function curves for the can.

and the Aralysis of Variance (ANOVA)[3,4] were
performed. Table 5 shows the design factors and
their extreme values chosen from the ANOVA results
and designer's judgements. However, three factors
such as the fill time, the postfill time and the
coolant temperature are excluded from such design
factors, instead, each of them is set at the medium
values between its two limits used in the L, array.
Table 6 illustrates the noise factors and their levels.

Finally, an automatic search process for optimal
by the modified

complex method. In the present study, the search

robust designs is carried out
process was separately performed for two different
initial design points; the design points generated
arbitrarily in the overall design space, referred to as
case [; the design points produced at random in the
neighborhood of a design point with the highest
S/N from the cross-product

ratio Taguchi's
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Table 3 Selected non-inferior design alternatives and
the preferred rank estimated by the AHP.

. Weld line | Warpage
Alternatives Preferred rank
(mm) (mm)
Ay 2.0 1.01 5
A 4.1 0.57 4
As 6.5 0.36 2
Ay 8.0 0.24 1
As 13.2 0.19 3
As 22.7 0.12 6
A7 30.5 0.08 7

Table 4 Variables optimized for the MAU function.

Design coefficients Estimated result
P/ 0.9377
SAUseld tine P’ 0.0883
ki 0.5432
Q’ 0.6694
SAUarpage Q' 0.6740
ks 0.3734

Table 5 Design factors and their limits.

Design factor Lower limit Upper limit
X (mm) 0.0 33.0
Thgiee (mm) 1.0 20
Thupebotom (M) 1.0 20
thold (s€C) 1.25 2.75
Toer ( °K) 505.0 545.0
Ppack (%) 30.0 90.0

experiment, or L;gx Lg, by the design factors and
the noise factors, referred to as case 2. Once the
initial design points are given, for each design
point, a set of experiments in the noise array L,
shown in Table 7 is run, and then the warpages
and weld lines, the MAU values, and the S/N ratios
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Table 6 Noise factors and their levels.

Noise factor Level 1 Level 2
tan (sec) -0.1 +0.1
thoa (S€C) -0.25 +0.25

toostrint (S€C) -1.0 +1.0
Toett ( K) 5.0 +5.0

Teocten ( K) -5.0 +5.0

Prack (%) -10.0 +10.0

are evaluated systematically. The search process
continues according to its rule, until the number of
S/N ratio evaluations make a total of 50. Fig. 9
shows the search procedure of the S/N ratio, which
in two ways,
number and average versus iteration number. Table

is plotted i.e.,, value versus run
8 shows the search results obtained for two different
initial design points; case I and case 2. From Fig.
9 and Table 8, it is shown that the search results
for case 2 is superior to those for case I, in terms
of both the total computing time and the quality of
searched designs; for case 2, two best S/N ratios
were -0.6560 and -0.6361 obtained in the 5¢% and
41st evaluation, respectively; for case I, however,
the best S/N ratio was merely -/.3/20 found in the
49th evaluation. Particularly, for the best solutions
for case 2, the mean values of the MAU were
0.9277 and 0.9295, respectively, while the standard
deviations 0.0/96 and 0.0097, respectively; in other
words, it ensures that both of the best solutions
have considerably high quality for both optimality
and robustness. Furthermore, Table 8 shows that the
weld line and the warpage of all the best optimal
designs
compared with the original design and Yao's design,

robust were adequately compromised,
which is a result in case of application of the
utility theory as a multiple objective optimization
technique. Table 9 represents molding variables
obtained for the best optimal robust designs for two

cases in Table 8.

7. Conclusions and future works

An automated injection molding design methodology

4

Table 7 Noise factor array for experiment.

Run | tan | thold [tpostfit |Tmett {Tcoolant| Ppack
R 1 1 1 1 1 1
R, 1 1 1 2 2 2
R; 1 2 2 { 1 2
R4 1 2 2 2 2 1
Rs 2 1 2 1 2 1
Rs 2 1 2 2 1 2
R; 2 2 1 1 2 2
Rs 2 2 1 2 1 1
Best point Best point

O, Lhoookg,
OO/O 0%005Pc0: 00 00

DUDDDD\/D[D:—JJ:R;DH

S/N ratio

—o— Case 1
—O—Case 2

T T T T T T T T T T T T
0 4 8 12 16 20 24 28 32 36 40 44 48 52
Run number

(a) Value versus run number

0

1 o 0000000 5-0-0-0-000V0 0000000 C o
o -1 oo
=
; 00000
- :,,:,:.g-g-u»c»u—:-:—u o-o-C-2000
2 .21 P
< .

va)
K -
o .34 /’pp
s —0—Case 1
g E/ —o—Case 2
< 44/
d
- 5 . : ;
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Iteration number

(b) Average versus iteration number

Fig. 9 Optimization procedure of the S/N ratio for
the can.
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Table 8 Best optimal robust designs selected for different initial design points.

MAU Weld line Warpage
Design | S/N ratio Standard Standard Standard
Average L. Average L. Average o
deviation deviation deviation
Case 1 -1.3120 0.8599 0.0105 1.9470 1.2017 0.2964 0.0207
Case 2' | -0.6560 0.9277 0.0196 2.2715 0.6008 0.1438 0.0381
Case 2° | -0.6361 0.9295 0.0097 1.6225 0.6008 0.1511 0.0176
Table 9 Results of molding variables for the best optimal robust designs.
. X Thside Thtop&bonom thold Tme]t Ppack thin tpostﬁll Tcoolant
Design o .
mm mm mm sec K % sec sec K
Case 1 274 1.34 1.97 1.37 521.9 49.7 1.0 10.0 303.0
Case 2' | 323 1.07 1.93 1.82 512.8 58.3 1.0 10.0 303.0
Case 27 | 315 1.10 1.94 1.97 511.4 57.0 1.0 10.0 303.0

has been developed to optimize multiple defects in

injection molded parts. In the methodology, a
tradeoff between conflicting multiple defects of
injection molded parts was successfully made by

an overall mutiattribute utility function based on

the designer's preference, which  was derived from
an integration of the utility theory, the Awnalytic
(4HP)
technique. The concept of the orthogonal arrays and
signal to noise (S/N) ratio in the Taguchi method

was incorporated in the methodology to consider

Hierarchy Process and an optimization

both optimality and robustness In
addition, a combined implementation of the modified

complex method and injection molding simulation

of a design.

was developed to search for optimal robust designs
within a limited number of simulation runs. Based
on the present study, however, it is concluded that
well-prepared initial design points need to be given
to obtain optimal design solutions of high quality
faster.

The methodology was successfully applied to the
actual molding design problem, as an example, for
the weld line and warpage optimization. From the
application, it was seen that the obtained optimal
robust designs exhibited high quality characteristics
in terms of both quality mean and quality deviation,

and consequently the methodology was expected to
be also applied to other actual injection molding
the
methodology will be of immense value to industry
the
and reduction of

designs. Applied to production, proposed

in maintaining the competitiveness through
of product quality
product development time. As future work, new

enhancement

decision making methods, including advanced utility
functions, may need to be developed to obtain the
designer's preference more accurately and more
consistently than the current approach. Additionally,
the cost issues of parts are planned to consider as
other attributes to be optimized in the methodology
in the future, even though the issues have not been
included in the current methodology.
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