The Applications of Viscoelastic Dampers for Vibration Control

Kim, Jin Koo Hong, Sung Il Lee, Kyoung Ah Lee, Dong Guen

ABSTRACT

The complex mode superposition method provides exact solution for the dynamic responses of a nonproportionally damped building system with viscoelastic dampers. However, as the number of the stories increases, a lot of computation time and memory space are required in eigenvalue analysis and mode superposition process. In this study, a rigid diaphragm and matrix condensation technique are applied for efficient modeling of the structure. Besides the so called complex mode response participation factor is proposed to find out a few vibrational dominant modes in order to improve the efficiency of complex mode superposition method. Then, response spectrums are reconstructed for nonproportional damped system, and the viscoelastic dampers are installed on the story according to the story drift obtained from the response spectrum analysis using a few dominant modes. This sequential procedure is repeated until the maximum story drift is reduced to a sufficient level. According to the numerical example, the proposed methods turn out to reduce the computation time significantly while the accuracy of the response still maintained.

Key words: viscoelastic damper, nonproportionally damped system, response spectrum analysis, complex mode superposition method

1. 서 론

 최근 고층 건물의 내진 및 내통 성능을 향상시키기 위하여 감쇠기를 이용한 수동진동체어 기술에 대한 관심이 높아지고 있다. 그 중 감쇠기

성 감쇠기를 이용한 수동체어방법은 건물의 정

성을 증가시키는 전도에너지의 소산시키므로써

진동을 효과적으로 제거할 수 있는 기술로 현

제 많은 연구결과에 의하여 그 효과가 입증되

고 있다. 특히 이 방법은 진동체어 효과가 뛰어

나고 저렴한 비용으로 손쉽게 시공할 수 있어

기존 건물의 내진보강에도 유리하므로 우리나

라와 같이 내진설계 기준이 적용되기 이전에

시공된 건물이 많은 경우에 적용가능성이 매우

높다고 할 수 있다.
고층건물의 진동제어를 위한 점탄성 감쇠기의 활용

그러나 점탄성 감쇠기가 설치된 구조물의 청가되는 감쇠기의 강성과 감쇠로 인하여 구조물이 비비례 감쇠시스템이 되므로 해석방법이 복잡해지고, 비례 감쇠시스템에서처럼 모드별로 분리하여 해석하기가 어렵다. 감쇠기의 영향을 고려한 해석의 일반적인 방법 중 직접 적분법을 사용할 경우에는 고유치 해석 과정은 필요 없지만, 고층 건물과 같이 자유도수가 많은 때는 직접 적분하는 과정에서 많은 해석시간과 컴퓨터의 메모리가 요구된다.

또한 방법으로 복소모드 중첩법은 전체 해석시간은 줄어드나, 자유도의 수가 2배로 증가하게 되어 고유치 해석과정에서 많은 시간이 소요된다. 또한 일반적인 모드 중첩법에서의 같은 절단정거제수를 정의할 수 없으므로 몇 개의 주요 모드만을 가지고 해석할 수 있는 이론적 근거가 미흡한 상태이다.

본 논문에서는 점탄성 감쇠기가 설치된 고층 건물의 동적기동을 예측하기 위하여 복소모드 중첩법을 이용하였고, 구조물의 많은 자유도수에 따른 해석시간을 줄이기 위하여 강각가정과 행렬응축기법을 적용하였다. 또한 전체 건물의 진동에 큰 영향을 주는 모드의 선택방법을 제시하여 복소모드 중첩법의 효율성을 높였다. 비례 감쇠시스템에서 응답 스펙트럼을 재구성한 후, 선택된 모드에 대하여 응답 스펙트럼해석을 수행하여 시간이력해석 결과와 비교하므로써 신뢰성을 확인하였다.

재구성된 응답 스펙트럼 및 몇 개의 주요 모드만을 이용하여 최대간편변이가 발생하는 곳에 감쇠기를 설치하였다. 설치된 감쇠기의 추가된 감쇠의 영향을 고려하여 만족할 만한 제어가 이루어질 때까지 고유치 해석을 반복. 수행한다. 이 방법은 짧은 시간에 비교적 단순한 과정의 반복에 의하여 감쇠기의 적절한 위치를 선정할 수 있다.

2. 효율적인 해석방법

자유도수가 많은 고층 건물에 대한 해석의 효율성을 높이기 위하여 강각가정과 행렬응축기법을 적용하여 구조물을 효과적으로 모형화하고 동적응답에 크게 영향을 미치는 주요 모드를 선별하여 시간이력해석 및 응답스펙트럼해석 수행하였다.

2.1 점탄성 감쇠기와 건물의 모형화

일반적인 건물에서 강각과 같은 가동을 보이는 슬래브의 영향을 고려하여 하중과 동일한 해석을 할 수 있다. 이 개념은 FEM 모델을 동일 평면 내에 있는 절점의 모드 자유도 중 강각의 가동을 표현할 수 있는 자유도인 평면의 이동과 회전 자유도만을 각 층의 대표점인 절단심점으로 변환한다. 변환된 자유도를 주차도로 선택하고 나머지 자유도를 부차도로 하여 주차도변수를 얻기고 행렬응축을 하여 각 층간 3개의 자유도만으로 표현되는 막대형 모델로 표현할 수 있다.

감쇠기의 강성과 감쇠는 온도와 작용하는 하중의 진동수에 따라 다르게 된다. 따라서 점탄성 감쇠기의 가력저절을 통하여 얻어지는 하중-변위 이력곡선을 이용하여 비선형해석을 하는 것이 보다 정확한 결과를 얻을 수 있지만 계산 과정이 너무 복잡한 단점이 있다. 본 연구에서는 T.T. Soong 등이 실험과 해석을 통하여 제시한 유효강성과 등가강성을 사용하여 점탄성 감쇠기의 강성과 감쇠를 별도로 연결한 Kelvin-Voigt 모델을 사용하여 모델링하고, 구조물의 고유감쇠는 Rayleigh damping을 사용하였다. 이렇게 구한 감쇠기만의 감쇠행렬을 응용하여 앞에서 구한 응축된 구조물만의 감쇠행렬을 더하여 전체 구조물의 감쇠행렬을 구성하였다.

2.2 비례 감쇠시스템에서의 고유치 해석

비례 감쇠시스템의 복소수 형태로 표현된 감쇠를 모드별로 분리하여 중첩시키기 위해서는 일반적인 동적평형 방정식을 그대로 사용할 수 없으므로 식 (I)과 같은 동등한 형식의 상태방정식을 사용한다. 이때 사용되는 각 형렬은
앞서 기술한 방법에 의하여 응축된 행렬이다.\(^{(5)}\)

\[A \ddot{y} + B y = Q \quad (1) \]

여기서,

\[A = \begin{bmatrix} 0 & M^* \\ M^* & C^* \end{bmatrix}, \quad B = \begin{bmatrix} -M^* & 0 \\ 0 & K^* \end{bmatrix}, \quad Q = \begin{bmatrix} \bar{u} \end{bmatrix}, \quad \dot{y} = \begin{bmatrix} \ddot{u} \\ \dddot{u} \end{bmatrix}, \quad y = \begin{bmatrix} u \end{bmatrix} \quad (2) \]

식 (2)에서 \(M^*, C^*, K^* \)는 각각 응축된 질량, 감쇠, 개성행렬이다. 또한, \(u^* \)는 엔딩변위벡터, \(\bar{u} \)는 지반가속도, \(1 \)은 적정중수의 영향을 고려하기 위한 벡터를 의미한다. 비바례 감쇠시스템에서의 상태방정식의 고유치 해석을 위하여 식 (1)의 차원을 제거한 계차방정식을 풀면 케라 복소수 형태의 고유치 및 고유벡터를 구할 수 있고, 식 (3)과 같이 각 모드별로 분리된 일계미 분방정식을 얻을 수 있다.\(^{(1),(9)}\)

\[\dot{z}_k - \rho \phi_k = - \frac{\phi_k^T Q}{\phi_k^T A \phi_k}, \quad k = 1, 2, \ldots, 2n \quad (3) \]

여기서,

\[\phi_k = \begin{bmatrix} p_k \phi_k^T \\ \phi_k \end{bmatrix} \quad (4) \]

식 (3)과 (4)에서 \(z_k, \rho_k, \phi_k \)는 각각 \(k \)번째 모드의 응답변위, 복소 고유치, 모드벡터를 의미한다. 라플라스 변환을 이용해서 각 모드별 해를 구한 후, 식 (5)와 같이 전체 모드에 대하여 중첩시키면 구조물의 전체 응답을 구할 수 있다. 이때 케라 복소수의 허수부는 종합영역에서 소거되어 결국 실수부만 남게 된다.\(^{(1),(5)}\)

\[u^*(t) = 2 \sum_{k=1}^{n} \text{Re} \left(\frac{\phi_k^T M^* \phi_k}{\phi_k^T A \phi_k} \times \sum_{i=1}^{n} e^{p_i(t-\tau)} Q_i(\tau) d\tau \right) \quad (5) \]

2.3 복소모드 중첩법에서의 주요모드 선택방법

전체 모드에 대하여 각 모드별 응답을 중첩시킨 구조물의 정확한 동적 응답을 구할 수 있다. 그러나 일반적인 모드 중첩법과 같이 구조물의 동적 기동에 큰 영향을 주는 몇 개의 모드만을 중첩시키더라도 거의 정확한 응답을 구할 수 있을 것이다. 이러한 경우에 모드 선택을 위해서는 어떤 모드가 구조물의 동적 기동에 큰 영향을 주는지를 알 수 있는 체계적인 방법이 필요하며 이를 위하여 본 논문에서는 기존의 모드 중첩법과 유사한 방법으로 비바례 감쇠시스템에서의 모드참여계수를 정의하였다.

식 (3)의 우변의 분자와 분모를 각각 정리하면 다음과 같다.

\[\phi_k^T Q = \left[p_k \phi_k^T : \phi_k^T \right] \begin{bmatrix} 0 \\ M^* \end{bmatrix} \begin{bmatrix} \phi_k^T \end{bmatrix} \quad (6) \]

\[= \phi_k^T M^* \bar{x}_k \]

\[\phi_k^T A \phi_k = \left[p_k \phi_k^T : \phi_k^T \right] \begin{bmatrix} 0 \\ M^* \end{bmatrix} \begin{bmatrix} \phi_k^T \end{bmatrix} \quad (7) \]

\[= 2 p_k \phi_k^T M^* \phi_k + \phi_k^T C^* \phi_k \]

식 (6)과 (7)을 식 (3)에 대입하면 \(k \)번째 모드의 동적 평형방정식에서 허수부가 후한 향수 식 (8)과 같이 된다.

\[\frac{\phi_k^T Q}{\phi_k^T A \phi_k} = \frac{\phi_k^T M^* \bar{x}_k}{2 p_k \phi_k^T M^* \phi_k + \phi_k^T C^* \phi_k} \quad (8) \]

여기서,

\[I_k = \frac{\phi_k^T M^* \phi_k + \phi_k^T C^* \phi_k}{2 p_k \phi_k^T M^* \phi_k + \phi_k^T C^* \phi_k} \quad (9) \]

\(I_k \)와 같이 나타내면, 기존의 모드참여계수와는 달리 분모에서 감쇠의 영향이 고려된 것을 알 수 있다.\(^{(5)}\) 그러나 식 (9)는 같은 모드라 하더라도 모드벡터의 스케일링에 따라 다른 값이 되므로,
본 논문에서는 기존의 모드 종합법에서 사용되는 일반함계수와 유사하게 식 (10)처럼 분자량을 제곱한 감쇠의 영향이 고려된 구조물의 복소모드 응답함계수 \(\Gamma_k^* \)를 구하여 본 논문에서 이를 적용하기로 하였다.

\[
\Gamma_k^* = \left| \frac{(\phi_k^T M^* 1)^2}{2 \mu_k \phi_k^* (M^* \phi_k + \phi_k^* C^* \phi_k)} \right|
\]

(10)

3. 비비레 감쇠시스템에서의 응답 스펙트럼 해석

앞에서 제시한 방법에 의하여 선택된 모드를 가지고 응답스펙트럼 해석을 수행할 수 있다. 그러나 비비레 감쇠시스템에서는 감쇠의 영향이 커지게 되므로 비례 감쇠시스템에서의 응답 스펙트럼을 그대로 사용할 수 없으므로 재구성된 응답 스펙트럼을 사용하여야 한다.

3.1 기존 응답 스펙트럼과의 비교

비비레 감쇠시스템에서는 비례 감쇠시스템에서와 달리 결과가 항상 복소모드로 표현되므로 비례 시스템에서의 결과를 그대로 적용한 응답스펙트럼을 사용할 수 없고, 복소모드를 같이 고려한 응답스펙트럼을 사용하여야 한다.\(^{(5)}\)

구조물에 대하여 감쇠가 작을 경우에는 비례 감쇠시스템에서 구성한 응답스펙트럼과 비비레 감쇠시스템에서 구성한 응답스펙트럼이 크게 다르지 않지만, 감쇠의 영향이 커질수록 큰 차이가 나타나 결과에 큰 영향을 끼치게 된다. 그림 1의 El Centro 지진 (남북방향, 1940)과 Mexico(동서방향, 1985)지진에 대한 변위 응답 스펙트럼을 비교하여 보면, 감쇠비가 10%일 때는 두 시스템에서 거의 일치하는 결과를 보이지만, 감쇠비가 50%일 때는 값의 차이가 커져 응답 스펙트럼 결과가 다르게 나타나는 것을 알 수 있다.\(^{(5)}\) 이를 통하여 감쇠의 영향이 큰 비비레 감쇠시스템에서는 변위 응답스펙트럼을 재구성하여 사용하여야 될 것이다.

3.2 선택된 모드의 조합

앞서 설명한 것과 같이 비비레 감쇠시스템에서 모드를 조합하기 위해서는 복소모드를 고려하여 조합하여야 한다. 식 (3)과 같이 모드에 대한 운동방정식에 대하여 \(k \) 번째 최대 변위는 식 (11)과 같다.

\[
u_k = \Gamma_k \phi_k S_{dk}
\]

(11)

여기서 \(\Gamma_k \)는 모드참여계수로 복소 모드에 대하여 커버 베타이며, \(\phi_k \)는 복소 모드ベ이터이며, \(S_{dk} \)는 응답스펙트럼에서 구한 최대 응답 처리를 의미한다. 따라서, 최대 응답을 복소 모드를 고려하여 SIRAS에 의하여 조합하여 구하면 식 (12)와 같다.

\[
u \approx \sqrt{\sum u_k^2} \approx \sqrt{\sum ((\Gamma_k \phi_k + \Gamma_k \phi_k) S_{dk})^2}
\]

(12)

3.3 예제 구조물의 해석

제시된 방법의 정확성과 효율성을 등을 검토하기 위하여 간단한 3차원 예제 구조물에 대하여 동적해석을 수행하고 그 결과를 살펴보았다. 예제 구조물은 그림 2와 같이 간단한 평면을
가진 3차원 10층의 골조구조물이고 임의의 몇 개 층에 점탄성 감쇠기가 설치되어 있다. 사용
된 기동은 H-400×400×13×21, 또는 H-300×
300×10×15이다. 점탄성 감쇠기의 유효강성과
동가감쇠는 k=10.8455 t/cm, c=0.9688t/(cm/s)
로 하였고, 지진하중은 El Centro(NS, 1940)지
진과 Mexico(EW,1985)지진을 사용하였다.
예제 구조물에 대한 해석방법을 표 1과 같이
분류하여 해석결과를 비교하였다. case-B에 사
용된 주요 모드를 선택하기 위하여 표 2와 같이
복소모드 응답참여계수와 그 참여율을 구하였
다. 여기서 3,4차 및 9,10차 모드의 참여율이
98%이므로 이 두 모드를 중첩시켜 시간이력해
석을 수행한 것이 case-B이다.
그림 3은 두 해석방법에 대한 최상층 변위를
비교한 것이다. 강막경계와 행렬응축법을 적용
한 후, 주요 모드를 선택하여 중첩한 case-B의
경우 case-A의 결과와 거의 일치하였다. 그림
4(a)의 최대층간변위를 비교한 결과에서는 각 층
마다 두 해석방법에 따라 약간의 차이가 발생하
지만, 그림 4(b)의 최대수평변위를 보면 비교적
정확한 결과를 얻을 수 있다는 것을 알 수 있다.

표 2 복소모드 응답참여계수와 참여율(Case-B)

<table>
<thead>
<tr>
<th>모드</th>
<th>응답참여계수(Γ)</th>
<th>참여율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.40×10⁻¹⁶</td>
<td>3.64×10⁻¹²</td>
</tr>
<tr>
<td>2</td>
<td>5.40×10⁻¹⁶</td>
<td>3.64×10⁻¹²</td>
</tr>
<tr>
<td>3</td>
<td>6.92×10⁻⁰³</td>
<td>46.77</td>
</tr>
<tr>
<td>4</td>
<td>6.92×10⁻⁰³</td>
<td>46.77</td>
</tr>
<tr>
<td>5</td>
<td>4.47×10⁻¹⁴</td>
<td>3.02×10⁻¹⁰</td>
</tr>
<tr>
<td>6</td>
<td>4.47×10⁻¹⁴</td>
<td>3.02×10⁻¹⁰</td>
</tr>
<tr>
<td>7</td>
<td>0.10×10⁻¹⁶</td>
<td>8.76×10⁻¹⁴</td>
</tr>
<tr>
<td>8</td>
<td>0.10×10⁻¹⁶</td>
<td>8.76×10⁻¹⁴</td>
</tr>
<tr>
<td>9</td>
<td>3.30×10⁻⁰⁴</td>
<td>2.23</td>
</tr>
<tr>
<td>10</td>
<td>3.30×10⁻⁰⁴</td>
<td>2.23</td>
</tr>
<tr>
<td>11</td>
<td>0.10×10⁻¹⁶</td>
<td>4.41×10⁻¹⁴</td>
</tr>
<tr>
<td>12</td>
<td>0.10×10⁻¹⁶</td>
<td>4.41×10⁻¹⁴</td>
</tr>
<tr>
<td>13</td>
<td>3.49×10⁻¹³</td>
<td>2.36×10⁻⁰³</td>
</tr>
<tr>
<td>14</td>
<td>0.10×10⁻¹⁶</td>
<td>4.17×10⁻¹⁴</td>
</tr>
<tr>
<td>15</td>
<td>0.10×10⁻¹⁶</td>
<td>4.17×10⁻¹⁴</td>
</tr>
</tbody>
</table>

그림 3 최상층에서의 변위시간이력

(a) 평면도 (b) 점면도 (c) 축면도

그림 2 예제 구조물의 평면 및 입면

表 1 해석방법에 따른 분류

<table>
<thead>
<tr>
<th>해석방법</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>시간이력 해석</td>
<td>Case-A: 강막기, 첨모드 증폭</td>
</tr>
<tr>
<td>Case-B: 강막기, 행렬응축, 주요 모드 증폭</td>
<td></td>
</tr>
<tr>
<td>응답스펙트럼 해석</td>
<td>Case-C: 주요모드 증폭</td>
</tr>
</tbody>
</table>

(a) 최대층간변위 (b) 최대수평변위

그림 4 최대층간변위 및 최대수평변위
행렬응축을 하지 않은 case-A의 경우 복소고유치 해석시 960개의 모드가 고려되는데 비하여, case-B의 경우에는 60개의 복소모드가 구해지고 그 중 네 개 모드만을 중점하였다. 그러므로 표 3을 보면 자유도수의 단축효과 뿐만 아니라 해석시간 마다에서도 제한된 방법이 상당히 효율적임을 알 수 있다.

제한된 방법에 의하여 선택된 모드를 가지고 응답 스펙트럼 해석을 수행하기 위하여 먼저 최대응답을 구하였다. 표 4는 선택된 모드에 대한 각각의 특성을 나타내고 있다. 3, 4차모드와 9, 10차모드는 각각 허수부의 부호만 다른 결과 복소모드이기에 때문에 감쇠비와 진동수가 동일하며 응답스펙트럼을 구할 때는 한 쌍의 모드로 고려하여야 한다.

El Centro(1940,NS)지진과 Mexico(1985,EW)지진에 대하여 3, 4차 및 9, 10차 모드를 가지고 응답 스펙트럼 해석을 수행하여 case-C라 정의하고, 표 1에 나타난 case-A와 case-B의 시간이력 해석 결과와 비교하였다. 그림 5를 보면 case-C가 두 지진에 대하여 case-A와 case-B의 결과에서 약간의 차이가 발생하는데, 이것은 각 모드별 위상차 그리고 응답스펙트럼 해석시 조합 방법에서 발생하는 오차로 판단된다.

그러나 비례 감쇠시스템의 특성을 반영하여 면시로 간단한 해석을 통하여 얻어진 case-C의 경우는 비교적 정확한 결과를 얻을 수 있다.

4. 점탄성 감쇠기의 적정위치 결정

점탄성 감쇠기를 설치할 때는 진동에 설치하는 경우가 가장 확실한 진동제어 효과를 얻을 수 있지만, 경제성과 건물의 기능적 측면 때문에 오히려 비효율적일 수 있다. 따라서, 고층 건물에 적은 수의 감쇠기를 사용하여 진동을 효과적으로 줄이기 위해서는 감쇠기가 설치될 적정 위치를 선정하는 것이 중요하다.

4.1 점탄성 감쇠기의 설치위치 선정방법

최적의 위치에 감쇠기를 설치하므로써 적은 수의 감쇠기를 사용하면서 효과적으로 진동을 제어하기 위하여 3장에서 설명한 방법을 이용하여 공간변위가 많이 발생하는 측에 감쇠기를 설치하였다. 이러한 과정을 다음에 나타난 단계로 정리할 수 있다.

1. 감쇠기를 선택한다.
2. 강력가정과 행렬응축기법을 적용하여 구조물 해석한다.
3. 복소모드 응답참여계수를 이용하여 주요 모드를 선택한다.
4. 응답스펙트럼을 이용하여 선택된 모드의

<table>
<thead>
<tr>
<th>해석 방법</th>
<th>자유도</th>
<th>Case-A</th>
<th>Case-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>중첩모드</td>
<td>960개</td>
<td>30개</td>
<td>4개</td>
</tr>
<tr>
<td>해석 시간</td>
<td>행렬응축</td>
<td>없음</td>
<td>4.67초</td>
</tr>
<tr>
<td></td>
<td>고유치해석</td>
<td>877.04초</td>
<td>0.43초</td>
</tr>
<tr>
<td></td>
<td>시간이력</td>
<td>1299.20초</td>
<td>0.09초</td>
</tr>
<tr>
<td>계</td>
<td>2166.24초</td>
<td>5.19초</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>모드</th>
<th>감쇠비</th>
<th>ω_d</th>
<th>S_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-C</td>
<td>4.082</td>
<td>2.805</td>
<td></td>
</tr>
<tr>
<td>Case-C</td>
<td>4.082</td>
<td>2.805</td>
<td></td>
</tr>
<tr>
<td>Case-C</td>
<td>4.082</td>
<td>2.805</td>
<td></td>
</tr>
</tbody>
</table>

그림 5 지진변 수평변위 비교

(a) El Centro 지진(1940,NS) (b) Mexico 지진(1985,EW)
고층건물의 진동제어를 위한 점탄성 감쇠기의 활용

\(S_d \)를 결정한다.

⑤ 식 (12)를 사용하여 선택된 모드를 조합하여 최대수평변위를 구한다.

⑥ 최대충진변위가 발생하는 층에 감쇠기를 설치한다.

⑦ 감쇠기가 설치된 구조물에 대하여 만족되는 수준의 최대충진변위가 발생할 때까지 ⑥에서 ⑤까지의 과정을 반복, 수행한다.

이 방법은 단순한 이치에 근거를 둔 방법이지만, 진동을 제어하는 데는 상당히 효과적이라고 할 수 있다. 이러한 과정을 순차적으로 반복하면 여러 개의 감쇠기를 참고할 때 추가되는 감쇠기의 강상과 감쇠를 충분히 고려하면서 효율적으로 최적의 위치를 찾을 수 있게 된다.

4.2 예제 구조물의 최적위치 선정

예제 구조물은 그림 6과 같이 2×1 경간의 20층 클로울 구조물이다. 모든 층의 총고는 3.6m이다. 사용된 부재의 크기는 표 5와 같다. 사용된 점탄성 감쇠기의 전단저작계수, 전단소실계수, 단면 적, 두께는 각각 15.67t/m, 237.7t/m, 1800cm, 2cm로 하였다. 동적하중으로는 El Centro(NS, 1940)진동을 Y방향으로 가진하였고, 또다른 지진의 특성의 영향을 고려하기 위하여 Mexico(EW, 1985)진진도 사용하여 보았다.

먼저 El Centro(NS,1940)진진에 대하여 4.1절에서 설명한 단계에 따라 몇 개의 모드를 선택한 후 비버리 감쇠시스템에서 재구성된 응답스펙트럼을 이용하여 충진변위를 구한 후, 충진변위가 최대가 되는 곳에 감쇠기를 하나씩 추가시키는 연속적인 절차에 의하여 감쇠기의 최적 위치를 선정하였다. 임의로 감쇠기8개에 대하여 재구성된 응답스펙트럼을 이용하여 고유치 해석만을 반복한 후 적절한 감쇠기의 위치를 선정하였다. 표 6은 그림 6의 예제 구조물에 대하여 감쇠기의 수를 하나씩 증가시킬 때 사용되는 모드 및 그 모드의 특성, 변위응답 스펙트럼 그리고 그때의 최대변위를 나타내고 있다. 이때 사용되는 모드는 3장에서 설명한 복소모드 응답참여계수(\(I^* \))에 의하여 모드 참여율이 90% 이상이 되도록 모드를 띠한 것이다. 또한, 변위응답 스펙트럼 값은 비버리 감쇠시스템의 특성을 고려하여 재구성된 응답스펙트럼으로부터 구한 값인데, 감쇠기의 수가 증가할 수록 감쇠기가 커지므로 이 응답스펙트럼을 사용하는 것이 보다 신뢰성이 높다고 할 수 있다.

충진변위가 최대가 되는 곳에 감쇠기를 하나씩 추가시키면서 재해방을 수행하였다. 감쇠기는 6→4→9→12→7→15→10→3층의 순서로 순차적으로 설치되었다. 감쇠기의 수를 하나씩 증가시키면서 최상층의 변위의 재해 정도에 미치는 영향을 보았다.

表 5 예제 구조물의 부재크기

<table>
<thead>
<tr>
<th>층수</th>
<th>보</th>
<th>기름</th>
</tr>
</thead>
<tbody>
<tr>
<td>11~20</td>
<td>H400×400×13×21</td>
<td>H600×600×30×30</td>
</tr>
<tr>
<td>1~10</td>
<td>H400×400×13×21</td>
<td>H700×700×30×30</td>
</tr>
</tbody>
</table>
고층건물의 진동제어를 위한 접탄성 감쇠기의 활용

를 살펴보면, 8개의 감쇠기를 설치하더라도 70% 이상의 변위를 제어할 수 있다는 것을 알 수 있다. 따라서, 전층에 대하여 8개의 감쇠 기를 설치하는 경우에 대하여 최적의 위치를 선정하는 각각의 방법을 표 7과 같이 분류하여 각 방법에 따른 최적위치 선정결과를 비교 하였다.

<table>
<thead>
<tr>
<th>감쇠기수</th>
<th>새롭게 설치된 위치</th>
<th>최상층 변위</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -</td>
<td>32.72</td>
<td>1.2</td>
<td>7.8</td>
<td>1.2</td>
<td>7.8</td>
<td>1.2</td>
<td>7.8</td>
<td>1.2</td>
<td>7.8</td>
<td></td>
</tr>
</tbody>
</table>

표 7에서 제시한 방법 중 case-1은 Chenger교수가 제안한 방법으로, 몇 개의 저차 모드와 그 모드에 해당하는 변위 응답스펙트럼의 결과를 이용하여 최적위치 index(ρ(x))로 최대 중간변위를 구하여 이 값이 큰 위치에 감쇠기의 개수에 맞추어 한꺼번에 설치하는 방법이 다. 이때 사용되는 모드는 모드의 수를 증가시키더라도 그 위치가 달라지지 않을 때까지의 저차 모드를 의미한다. 모드수에 따른 최적 위치 index를 구하면 표 8과 같이 나타난다. 제어되지 않은 건물은 1, 2차 모드의 영향이 지배적이므로 모드의 수가 증가하더라도 감쇠기의 위치는 달라지지 않는다는 것을 알 수 있다. 따라서 이 방법에서 8개의 감쇠기를 설치한다면 적절한 위치는 index가 큰 3층에서 11 층까지다.

<table>
<thead>
<tr>
<th>Story</th>
<th>사용된 모드수</th>
<th>3개 모드</th>
<th>4개 모드</th>
<th>5개 모드</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.1877</td>
<td>0.1896</td>
<td>0.1889</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.2313</td>
<td>0.2323</td>
<td>0.2324</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.2837</td>
<td>0.2843</td>
<td>0.2843</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.3354</td>
<td>0.3356</td>
<td>0.3356</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.3814</td>
<td>0.3814</td>
<td>0.3815</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.4202</td>
<td>0.4203</td>
<td>0.4204</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.4517</td>
<td>0.4520</td>
<td>0.4521</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.4776</td>
<td>0.4779</td>
<td>0.4779</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.4997</td>
<td>0.4999</td>
<td>0.4999</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.5210</td>
<td>0.5210</td>
<td>0.5211</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.5346</td>
<td>0.5346</td>
<td>0.5346</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.5500</td>
<td>0.5501</td>
<td>0.5501</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.5648</td>
<td>0.5650</td>
<td>0.5650</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.5765</td>
<td>0.5767</td>
<td>0.5767</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.5810</td>
<td>0.5811</td>
<td>0.5812</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.5719</td>
<td>0.5719</td>
<td>0.5719</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.5401</td>
<td>0.5401</td>
<td>0.5401</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.4724</td>
<td>0.4725</td>
<td>0.4725</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.3497</td>
<td>0.3498</td>
<td>0.3499</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.1425</td>
<td>0.1427</td>
<td>0.1427</td>
<td></td>
</tr>
</tbody>
</table>
表 7에서 case-2의 방법은 진동수 영역에서 응답의 파워스펙트럼 밀도함수(power spectral density function)를 진동수의 전체역에 대해서 주본한 후 적분기를 취하여 RMS 변위 응답을 구한다. Kanai-Tajimi 스펙트럼을 사용하여 RMS 변위 응답으로부터 RMS 층간변위를 구하여 이 값이 최대가 되는 곳에 감쇠기를 한 개씩 연속적으로 설치하였다. 이 방법에서는 동시에 발생한 인접 층의 변위 응답으로부터 층간변위를 구하는 것이 아니라 때문에 일반적인 개념의 층간변위와는 의미가 다르다. 이 방법은 사용하여 감쇠기의 적절한 위치를 구한 결과, 7→4→11→9→5→14→12→3층의 순서로 순차적으로 설치되었다.

表 9에 나타난 것처럼 각각 선택된 감쇠기의 설치위치에 대하여 8개의 감쇠기가 설치되었을 때의 최대수평변위 및 최대층간변위를 비교하여 보았다. 결과 비교의 신뢰성을 위하여 case-1, case-2, case-3에 대하여 선정된 위치에 8개의 동일한 감쇠기를 설치한 후 모든 경우에 동일하게 3장에서 제시한 강경기구 및 행렬용축기법을 적용한 북소모드 중첩법을 이용하여 시간이력해석을 수행한 결과를 비교하였다. 그림 7의 결과를 보면 여러 개의 감쇠기를 한변에 설치한 case-1에 대하여 순차적으로 설치하는 case-2와 case-3이 보다 더 층간변위를 제어할 수 있다는 것을 알 수 있다. 특히, case-3은 층간변위를 이용하기 때문에, 층간변위를 제어하는 데는 더 큰 효과가 있었다. 감쇠기가 설치된 효과를 비교하기 위하여 그림 7의 경우 살펴본 결과 본 논문에서 제시한 case-3의 경우는 상당히 신뢰성이 있는 결과를 얻을 수 있었다.

表 10 감쇠기 수에 따른 적절위치(Mexico 지진)

<table>
<thead>
<tr>
<th>감쇠기 수</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case-2</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>14</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Case-3</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>12</td>
<td>7</td>
<td>15</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

결과적으로 case-2와 case-3의 제어된 층간변위가 약간의 차이가 있을 뿐 두 방법 모두 효과적으로 변위를 제어할 수 있었다. 그러나 case-2의 경우는 각 모드간의 관계가 더 고려해야 하기 때문에 많은 시간이 소요된다. 본 예제에서는 갤전동수가 10rad/s 미만인 모드 만을 고려하였는데, 감쇠기를 하나씩 추가시키는 한 단계마다 case-2의 경우는 약 5096.58초의 시간이 소요되었다. 이에 반해 case-3의 경우는 120.24초의 시간이 소요되었으므로 제어된 case-3의 경우는 효율적이라고 할 수 있다.

같은 방법으로 높은 진동수 성분을 갖는 Mexico(EW,1985)진진을 사용하여 적용하였다. 표 10은 감쇠기 수에 따라 선정된 위치이고, 그림 8은 선정된 위치에 따른 최대수평변위 및 최대층간변위를 나타낸다. El Centro 지진에 대한 결과와 비슷하게 단측한 수준으로 변위 제어를 할 수 있었다.
고층건물의 진동저어를 위한 접촉성 강쇠기의 활용

![그림8](attachment:image8.png)

(8) 최대수평변위

![그림9](attachment:image9.png)

(9) 최대총각변위

크림 8 강쇠기 위치 선정방법에 따른 최대수평변위 및 최대총각변위 비교(Mexico EW, 1985)지진

Case-2의 방법은 Kanai-Tajimi 지진 모형을 이용하였으므로 RMS 총각변위에 의한 최적위치는 달라지지 않는데, 이러한 점의 비교를 위하여 El Centro 지진에 대하여 case-3의 결과로 나온 최적의 위치를 Mexico 지진에 적용하여 보았다. 표 9의 case-3의 결과와 표 10의 case-2의 결과를 비교한 결과는 그림 9와 같다. case-3의 주요 모드를 선택하여 저차모드를 효과적으로 표현하기 때문에 비교적 만족할 만한 수준으로 변위를 제어할 수 있다고 판단된다.

그림 9 표 9의 결과를 사용하였을 때의 Mexico지진에 대한 변위제어효과

이상을 토대로 본 논문에서 제시한 방법의 정확성, 효율성 및 신뢰성을 점검할 수 있었다. 따라서 비버레 강쇠시스템에서 제구성된 응답 스크립트를 이용하면 최대 총각변위가 발생하는 곳에 강쇠기를 하나씩 순차적으로 설치해 나가는 이 방법은 시간이력해석을 수행하지 않고도 고유치 해석의 반복 수행에 의하여 초기 설계 단계에서 빠른 시간 내에 간편한 방법으로 강쇠기의 최적위치를 산정할 수 있는 방법이라고 사료된다. 또한, 새롭게 설치되는 강쇠기의 영향을 고려하면서 재해석을 수행하여 강쇠기를 설치한다면 몇 개의 강쇠기만으로도 충분히 변위를 제어할 수 있으며 경제적이라고 할 수 있다.

4.3 강쇠기의 개수에 따른 변위제어효과

그림 10은 그림 6의 예제구조물에 대하여 강쇠기의 수에 따른 최상층 변위를 구한 것이다. 그림을 보면 감쇠기의 수가 증가하면서도 변위가 줄어드는 비율이 일정하게 감소하는 것은 아니라는 것을 알 수 있다. 그리 11은 설치된 감쇠기의 개수와 식 (13)으로 표현되는 변위 제어지수에 대한 관계를 나타낸 것이다.

\[
\text{control index} = (1 - \frac{\text{displacement w/ damper}}{\text{displacement w/o damper}}) \times 100 \quad (13)
\]

![그림10](attachment:image10.png)

(10) El Centro 지진

(11) Mexico 지진

그림 10 설치된 감쇠기 수에 따른 최상층 변위
고층건물의 진동제어를 위한 견탄성 감쇠기의 활용

그림 11 설치된 감쇠기의 개수에 따른 최상층 변위 제어지수

그림 11을 보면 전층에 대하여 견직의 위치를 선정하여 4개의 감쇠기를 설치하더라도 변위에 대하여 El Centro 지진은 60%, Mexico 지진은 80% 이상의 제어지수를 갖는다는 것을 알 수 있다. 5.2절에서와 같이 8개의 감쇠를 설치한 경우는 두 지진에 대하여 각각 70%, 85% 이상으로 최상층 변위를 제어할 수 있었다.

5. 결 론

본 논문에서는 견탄성 감쇠기가 설치된 비버레 감쇠 구조물의 효율적인 동적해석 및 견탄성 감쇠기를 설치하기 위한 적절한 위치를 선정하는 방법을 연구하였다. 3장에서는 해석방법, 4장에서는 최적위치 선정방법에 대하여 연구한 결과들에 대해 구조물에 대해서 적용한 결과 얻은 결론은 다음과 같다.

(1) 제안된 방법에 의하여 목소모드 응답참여계수를 사용하여 선택된 모드만을 가지고 해석을 수행한 결과 빠른 시간 안에 만족할 만한 결과를 얻었다. 따라서, 이 제법은 목소모드 쌍방법을 이용한 비버레 감쇠시스템의 효율적인 동적해석을 위하여 매우 유용하게 이용될 수 있을 것으로 사료된다.

(2) 선택된 몇 개의 모드에 대하여 감쇠의 영향이 고려되도록 비버레 감쇠시스템에서 제구성한 응답 스펙트럼을 사용하는 것이 보다 신뢰성 있는 결과를 얻을 수 있다.

(3) 참가된 감쇠기의 영향을 고려하여 고유치 해석공을 반복하여 연속적인 절차에 의하여 변위를 제어하는 방법은 비교적 단순한 작업으로 적절한 위치를 선택할 수 있는 효과적인 방법이라고 사료된다. El Centro지진에 대한 위치 선정결과를 Mexico지진에 적용하였을 때도 만족할 만한 수준으로 변위를 제어할 수 있었다.

(4) 견탄성 감쇠기의 최적위치를 선정하여 그 위치에 감쇠기를 설치한다면, 몇 개의 감쇠기만으로도 충분히 변위를 제어할 수 있다. 따라서, 최적위치 선정방법과 감쇠기 수에 따른 제어지수의 관계를 잘 이용한다면 건물의 초기 설계 단계에서 혹은 기존 건물의 내진성능 보강시에 보다 경제적이고 효율적인 설계가 가능하다고 기대된다. 견탄성 감쇠기의 적용성을 더욱 높이기 위해서는 응답가속도와 응답속도에 대한 사용성 평가에 대한 연구가 이어져야 할 것이다.

감사의 글

본 연구는 '구조물의 내진성능 향상을 위한 보강 및 재건기술 개발' 과제로서 한국도로공사가 주관하는 건설교통부의 '99건설기술연구개발사업의 연구비 지원에 의하여 수행되었습니. 이에 대하여 감사드립니다.

참 고 문헌

