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On the Autocovariance Function of INAR(1) Process
with a Negative Binomial or a Poisson marginal

YouSung Park'and Heeyoung Kim®

ABSTRACT
We show asymplotic normality of the sample mean and sample autoco-
variances function generated from first-order integer valued autoregressive
process(INAR(1)) with a negative binomial or a Poisson marginal. Tt is
shown that a Poisson INAR(1} process is a special case of a negative bino-
mial INAR(1) process.

Key Words: Negative binomial and Poisson INAR(1) processes; asymptotic
normality; sample autocovariance.

1. Introduction

It frequently occurs that a sequence of count observations exhibits depern-
dency which must be appropriately modeled. Several authors have studied inte-
ger valued analogues of ARMA models. Mckenzie (1986) proposed autoregres-
sive moving-average processes with negative binomial and geometric marginal
distributions as the counter part of models for continuous time stationary pro-
cesses with gamma and exponential marginals. Alzaid and AL-Osh (1990), and
Mckenzie (1988) studied ARMA processes with Poisson marginals. Park and
Kim (1997), and McCormick and Park (1997) investigated asymptotic properties
of sample autocovariance function in MA processes with Poisson marginals. In
this paper we study the asymptotic properties of sample autocovariance func-
tion in a negative binomial/Poisson autoregressive process with order 1 which is
introduced by Mckenzie (1986,1988). The model is defined as

Xn:a*Xﬂ,—l-l_Wn (11)

where X, n = 0,£1,4£2,--- s a stationary sequence with a negative binomial
distribution(N B{r,8)) or a Poisson(A). The star operation is referred to as hino-
mial thinning o * X :Zf{:l B,(a), where B;(«) are i.i.d Bernoulli r.v’s indepen-
dent of X with P(B;() = 1) = . As in a usual continuous AR{1) model, X, _;
is independent of W,, and {W,,n =0,+1,4+2,---} are i.i.d r.v's.
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Model (1.1) can be interpreted as a queueing process when X, is defined as
the queue size in a system at time n. In particular {1.1) is equivalent to the
M/M/oc queueing process when X, is a Poisson r.v (Mckenzie, 1988). Further-
more, (1.1) can be also interpreted a branching process wilh offspring mean o
and immigration r.v, W,,.

It can be easily verified by the properties of binomial thinning and the sta-
tionarity of X, that

(e8]
Xp=axXo 1+ Wo 2 Y a2« W, (1.2)
=0
Let X, be the number of objects in a system al time n. And also let W,
be a set of objects at time n and W, be the number of objects in W,. Define
Y(n) =1 if the jth object of W, is in the system at time n -+ 1 and 0 otherwise.

Then o + Wy, can be defined as Z Y(n) where, for each fixed n and 7, Y(n)
are i.i.d Bernoulli sequence with P[Y) ( - = 1] = &, Then by {1.1) and (1.2) the

following construction is an altematwe reprasentation of the binomial thmnmg
for each fixed n and j, P[Y(nJ = Y{n) =1,- Y< ) = =a% i <ig <+ - <

Jqt1 Itz Ik

ir. Observe that from (1.1), the event (Y( 1) can be occurred only when
(Y(n)1 = 1). This means that the event (Yj(?l) = }J(:;) =1,- 1,;(11) — 1) is

equivalent to the event, (Y(n) =1)for 0 <y <ig < - < iy, < o0, Therefore, we
have P[V"V = 1] = o

Dk
Summarizing these, we have

{n) (n) _ (n) (n) _
P[};ﬁl *1}/:712 L ’Yﬂk_ ] P[YHA 1]

(1.3)
and Y(”) andY(, ,)are independent whenever(n, 7) # (n', 7).

Note that the independence between YJ(:") and YJ(,’;’,) for (n, 7} # (n’, 5"} is obtained
by the independent assumption for {W,}.

Let X,'% and W' be X, and W, in (1.2), respectively when X,, ~ NB(r, 8).
Similarly, XFY and WV are the Poisson section of X,, and Wy, respectively in
which X, ~ Poisson{A). Then the following moment calculation is easily found:

r(l—8)
g
and ¥VB(h) = Cov(XNB XNB) = |h|?"(16g9), (1.4)

PV (h) = Cou(XEN XPN Y = alfl),

B(X)B) = CE(XENY =2
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From {1.4), we obtain the nonnegative autocorrelation function
pNB(kh) = pPN (+h) = ol (1.5)

for the respective INAR(1) processes defined in (1.1) or (1.2). Note that F(XF) —
E(XPNY and yVB(h) — vFN(h) as r(1 — ) — X and § — 1. This can be easily
inferred from the fact that XN8 % XPN a5 r(1—#0)— Xand 6 — 1.

This paper is summarized into the following 2 sections. In Section 2 we
first calculate the moments EHLI Xf:’kB for k = 2,3,4 and then show that, for
each k, EH:-“:l(XgB) — EHfZI(Xf;N) as (1 —¢) = A and @ — 1. Using
these results, we also derive the variances of the sample mean and sample auto-
covariances for the negative binomial and Poisson INAR(1) processes. The sample
auto-covariances used in this section 2 are normed by the respective population
means instead of their own sample means. Section 3 shows that the sample mean
and sample auto-covariances deviated by the sample mean jointly converge to
a normal vector when X, follows a negative binomial distribution. Then we
show that the asymptotic results shown with a negative binomial sequence can
be applied to the case of a Paisson INAR(1) process by letting r{1 —#) — A and
& — 1. The proofs of all results in section 2 and 3 are given in Appendix.

2. Relationship between Poisson and Negative Binomial
INAR(1) processes

Suppose that X is a random variable taking values in N* = {0,1,...} with
probability generating function P(s) = E(sX). Then the distribution of X be-
longs to discrete self-decomposable class if

P(S) :P(l *a'l'a“LS)Pa(S): ‘Sl <l ae {D: 1) (2'1)

where F,(s) is also a p.gf. Tt is easy to see that NB(r,0) and Poisson())
INAR(1) processes defined in (1.1) or (1.2) satisfy (2.1). This implies that
NB(r,f) and Poisson {A) belong to the discrete self-decomposable class and pro-
duce the following:

Lemma 2.1. WP can be represented by

WNB _ {O, with probability o (2.2)

" NB(j,6), with probability (,”)a"/(1—a), 1<j<r
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And also ax XNB - ax XPN gnd WNE Y, WP 4o 01— ) 5 A
and 6 — 1. Moreover, the kth moment of W¥B converges to that of WEN for
E=1,2,3,4asr(1—8) = A and & — 1.

Let p1 = E{XVF) and py = E(XPN) throughout this paper and define
N 1«
AV (h) = EZ(XfB — ) (XH — 1) and
’7PN(h) = = Z(Xt — p2) Xt+h pz)

where XVB = L570  xNB apd XN — 1 5°% 1 XY, Then the following result
is given by

Lemma 2.2. Suppose that {XXBY} and {XPNY follow INAR(1) processes given
in (1.1) or (1.2} . Then

(i} limpoeonVar(XN¥8) = 5@”—“,

(i)

D

dim ncw(XNBnNB(h)) (2.3)
(1 )[(28(1-}-&) + {1 +8)(2+ )], ifh=0,

B %‘*%+—F" (2 1) ifh=1,

= %ﬂ h(1+l’-‘t LR+ rB; (11+€c)x)
[Ha—l-a(l—ah 2+ o) ifh > 2

(i)

lim  lim nVaer(X)%) = lim nVar(XFM)

7(1;9)—3»)\ n—+00 300
wINB ~NR - PN PN
r(1i—lg§l—>>\nl-l+n§onCOU(X” A7 (R)) = ﬂlLIEOnCOU(X 7 Y (R)).
=1

Next, we derive nCou{¥V¥(h)), ¥¥B (hy)) which will be used for obtaining

the covariances of sample auto-covariance functions.
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Lemma 2.3. For hy = ha

(1/b1) liny, 00 nCoV(FVE (h1), 57 (h2))
(by + (1 +a)? + {26y — 20 — by + 40™ (1 + a)?
—20202%1 4 (1 — ) (1 + by — ho)a™™
+(1+ hy + ha)a?) + 202 (o P2 + o"2)14
= 4 +{by — (1 + a?) +2b3 + 20" (0 — 4o+ 1)}F°, ifhy > 1,
A(l—o®) + (1 4+ a)? + {4(1 + @)? — da™ !
—2h1 (1 — a®) + 2r(hi (1 — a®) + (L +o2))}8

+{hi (1 — a®) + 4o + 1 — 6o + A1, if hg =0,
where
B ]
b 1?6t
bg = (1 - Oﬁz)(hl - hg)
by = z{ahl—hz(l + CF) . a2h1—2hg (1 - Q‘Zh!,g) _ ahl—o—hg{l _ CE)}
And

Tim nCou(¥™ (), 77V (h)) = Jim  lim nCov(¥"F {h), ¥ (o).
f—1

3. Asymptotic distributions

In this section, we establish asymptotic results for the sample mean and
sample auto-covariance functions when the sequence {X,} follows the NB(r,8)
INAR(1) process described in (1.1) or (1.2). Then we show that the asymptotic
results pertaining to the INAR(1) process with a negative binomial marginals are
reduced to a special case when the sequence {X.,} is the INAR(1) process with
Poisson marginals. Theorem 3.1 and 3.2 below are the the results for negative
binomial marginals and Corollary 3.1 is for Poisson marginals. Let

Vit Vo
V= :
( Vig Ve )
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be the (h+ 1) x (h + 1} dimensional matrix with

Vii = lim nVar(XY#),
N—re0
1y = lim nCou(X¥7, 577 (h)),and
Var = lim nCov(3"P(h1), 7" (ha)), hiha =0, b

Then we have

Theorem 3.1. Suppose that X;?TB = a*XTILVE +WHNE where X,{“VB s according

to NB{r,8). Then
XNB r8/0
TV E(0) +MB(0)
v | Q) | ~an || AV | v

VB (h) vV E(R)
. 1P _ o
Now, let V7 (p) = ~Z(X5NB —X,iVB)(Xng — XNB) 0 < p < h. Then we
=1

have the following:

Theorem 3.2. Under the same model as in Theorem 3.1, we have

XN r/¢
22 0) ¥ (0)

V| AP | ~an || R |y
570 0

n—p
PN _

For a Poisson INAR(1) process, define 57 (p) = 1 é (xry —X,fN)(Xt_Lp
n :
t=1

X,f N). Then we have the following corollary by Lemma 2.2, Lemma 2.3 and the

exactly same arguments as in Theorems 3.1 and 3.2.

Corollary 3.1. Let XJV be a Poisson INAR(1) process defined as (1.1) or (1.2)
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with XPN ~ Poisson(A). Then,

PN A
77 (0) g
G| AN | ean || YO | s

AP (h) PV (1)

where A = lim,q-e-x E(XVE), ¥Y(R) = limq_nos vV (R), and VIV =
1

. d—1 é—
lim.gaya V.
f—1

Theorem 3.2 and Corollary 3.1 can be applied to obtain asymptotic distri-
butions for natural estimators of parameters involved in model (1.1). More pre-
cisely, let fi, fo and f3 be a function of u;,¥yV8(0) and vV8(1) such a way that
fio= et ) fao= p2P0) — ), and fy = 47 B(1)/47B(0), Then,
since pp = r8/8, ¥YB(0) = r8/6%, and YVI(1) = ard/8%, H1() =0, faf) = r,
and f3(-) = o. Hence fi,f and f3 are estimators of 8, r, and o, respectively
in which f, = f,(XXB 4¥B(0),4V5(1)), « = 1,2,3. Similarly, for a Poisson
INAR(1) process, define g; = pz and ga = vFV(0) /4PN (1). Then g1 = XY and
Go =¥V (0) /47N (1) are natural moment estimators of A and «, respectively. Tt
is an easy exercise to obtain asymptotic distribution of fl, f2 and f3 by Theorem
3.2, and &1, g0 by Corollary 3.1 since all functions of fq, fo and fa, and g1 and g
are continuous.

Appendix

Proof of Lemma 2.1. Under model (1.1), we have E(SX?’TB) = (“1tg§;) and

E(s‘**Xfy—Bl) = (Wiﬁ-aﬁ)r = P}NB(s) where 8 = 1. Thus by independence

of a* XMB and WNB |

B [1 —B(1 ~a+as)]7' _ PNB(g).

On the other hand, under (2.2),

WJ‘NB r - 9 :'1 _
B = @ Y (D) - o () = R
=1

This shows the first claim.
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The second claim is immediate since PY5(s) — PPV (s) and PPP(s) —
Pﬁ,N(s) as r(l —8) = A and € — 1. Finally, from (2.2), the {followings are easily

obtained:
ré
BEWYB) = 7 (-,
d _
BWNB? = 55(1 —a){1 + fa+0r(1 — a)),
g _ _ _ _ _
EWYBP = (1 —a){1+8 + 308 — a{l — 20)87 + 3r6(1 — a)(1 + fo
n 63
(1 — a))?), and
1 —
BB = o) 7 N (1 4 46 + 6 1 Tah + 06 — 208" +126°8°
—60°0° + 6c°0%)
207 . 2 _ _ _ —
TG(;%('? + 46 + 18 + Tab® — 462(1 —a)a)
393(1 — @) —

Hence, the result holds by letting (1 —8) = A and & = 1 in (A.1) since WI¥ ~
Poisson((1 — a)A). This completes the proof.

In oxder to p1 ove Lemma 2.2, we need to calculate the moments of & I_[1 X[ B
and EH PN for k = 2,3,4. The moments are necessary to derive 11m1t1ng
dlstrlbutlon of sample mean and sample autocovariance measured from the pro-
cess defined in (1.1) or (1.2). Throughout this Appendix, denote py = E{XV¥)
and py = B(XTN).

Lemma A.L. Let X¥# ¢ > 1 be the process defined in (1.1) or (1.2) with a
NB(r,8) marginal. Then, for £ > hy, hy,ha > 0, as»(1 —8) + A and & — 1,

E(XfBXth) - E(XFNXH,“

E(XAIBXt]iEl 't]ig'lﬁ‘rhz) — E(XPNXt+h1Xt+fL1+h,2) a‘nd

E((XENB - #1)(){3?21 - P"l)(Xt-J,-g - Hl)(Xt+§+hg —p)
{(

BUX]™ — w2 (X5, — m2) (X5 — p) (XY 0, — 12).

Explicit forms of the above moments are given in the following proof.
Proof. For &k = 2, the claim is easily obtained by observing that
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YNEB(Ry) — PN () and B(X]MP) o B(X]Y). Consider k = 3. Observe that

E(XiXeih Xivhy)

o0 0] s8]

- E(Z ol « W, Z ol Wis Z aFhath oy Y
=0 J=—h k=—h1—h3
s ]

= E(Z of x W_jo M s Wttt ow, )
=0
o0 oG

+ E(Z o« Wy, oMt « W, Z afitheth Wi k)
=0 k=—hy —hg

ke

c<a [ 9]
+ E(Z a’ Wmtuzahﬁ_hgﬂ * Wi Z ot Wi-;)

2=0 1=—h

s
J#

o0
oty Wt_quhl+h2"'j « Wi, Z o« Wi_,)

(o]
+B( Y
= i
+E( ), of * Wy T 5 Wy thats oy, ). (A.2)
(EE
The first term in (A.2) (i.e., the case of i = j = k) is by (1.3)
E(W)[Z ahl—!—hg-{—z]
=0
oo co o0
+ E(W2 _ W)[Z O’,H—hl ai+h1+h2 T Z a'iai+fz1 + Z aia'i+}L1+h2]
i=0 =0 1=0

e8]
+ E[VT/(W — 1){W — 2) Z aiai+hla1+h’1+hz]_
=0

By (1.3) again, the second term in (A.2) (i.e., the case of (i = j} # &) is given by

(e 4] o0
E[Z o« Wi_,aMti = W,_, Z afthetk oy
2=0 k=—hy—tg
ke
& 9] ) o0
= Z[E’(cut * Wi_,o™MT7 4 W] E( Z ol theth Wi_z)
=0 km—-hl—hz
faAt
8 0] oC
=Y [BW)ah T+ BW? - Wdle™] Y oI E(W)]
=0 =0

J#ER R4
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The 3rd and 4th terms are also calculated by the similar method as in the second
term. Finally, the 5th term(ie, i # 7 £ k) is

Io ( Z a'i # Wt_ﬁa']“+j " Wt_jahl-l-h2+j " W-t—j)

ity ik
(w) o0 o2

= ZEQ“ * Wy ; Z Ea™Mti Wi, Z EoMmthatk oy,
=0 j=—h k=—h1—h

[e.0] o
— ZE(@“ « Wi_,aM ¥ W) Z ElaMThetE g )
I;

=0 k=—h1—hg
Fegtr
oo o0
- Z E(o? « Wy_zolithe=iy Wii) Z E{aM*7 4 Wi_j)
1=0 Jf==hy
FED
o O
— Z Ela « Wi_,) Z E(a™t Wi, ol thets Wi,)
2=0 j:*hl

00
+ QE(Z o W{rt_zahl-f-’t # Wt,ia’hl-l_hzﬂ " Wt—i)
2=()

Combining all caleulation above yields

E(XtNBXﬂF‘ELXfﬁfl-th)
= (4 BWP o

1 6 E{W/NB

1—w 8 1«
Var(WH8) — E(WNE

)
T (a€+h + 2a2§+h)

rf Var(W/HE) — B(W/E)
g 1— o2

+ {E(Wt”B(Wt”B — WP - 2)) - sEWI P\ E(WNE® — wiE)

(CEE + 05.5-1-:'?- + Cl_’h)

+

(G!E + ag'l-h + th')

o 26+h

1 —ad

(A.3)

+ EE(WtNB)E'] X

Now, consider k& = 4. By the similar approach as in & = 3, we arrive at the
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following result after a long computation:

E(Xf,NB - #l)(XfiE] - Ml)(xﬂ? - #l)(Xtﬁ?-le - ,Ul)
C)fEJrh2 + Al(B,a)

= (WP T (cf 2 4 galatiths 4 4, 26tha)
A0, 0)  piqesn 26+ he hi-F26h
| (@ 2050 4 3aMTRTR) 4y )y(Be)
As (8,
+y(E3y(€ — ha + ha) + Y&+ ha)v({ — ha) + T‘q’(:aii)a’“”ﬁh? (A.4)
where
ri?
Aj(8,0) = Var(W)-EW)= 2 (1—a?),
As(B,0) = E(W? —3W?242W) 4+ 2B (W) - SE(W)E(W” — W)
93
== rgg (L—a®), and

A3(8,0) = B(WY—6W?3 + 1LW? - 6W) — 3(E(W? — W) — 6B (W)
CAB(WIE(WS® — 3W?2 4+ 2W) + 12E2 (W E(W? — W)
it
= 6F(1 - (){4).

where W = W2 and the third equality in each of Ay,42, and A3 are computed
from (A.1). This completes the proof by Lemma 2.1 since the moments given in
above depend on only the moments of E{W¥5)* &k =123, 4.

Proof of Lemma 2.2.

o 1 n T
BXNEY = @E(ZX?’BZX?’B)

t=1 s=1

1

= %[ (rf +n—+22n— —a] (A.5)

(1.4) is used for the last equality. Thus

Var(X2) = (4-2712( )’"95
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This shows (i).
For (ii), observe that for h > 0,

B 2 X S )X )

=1 s=1

— EE( ’.%)E (Xt—i:f 1)(Xgr?+h _)u’l))

1 h-1 E
b (1= ) BT - ) XER O - )
£=1
1 n—1 6 7
vt (1—5)E(<X5VB—M)(X%—u.l)X;i?)- (A6
t=h

By (1.4) and {A.2), (A.5) can be rewritten as

TQ_ 1 = Tg ‘T'§2 6 +

n—1 = = =
1 é- T@ h 7'92 h Eth T93 }
+ EZ(1~~n){Fa +H—2(a + 2« )-i-ﬁafﬁ"}
1
R, EN(r ré? rg?
+ = (1 - H) {Foﬁ + “{‘9““( + 20!’5+h) -+ 8—3C}!E+h}.

Hence

lim nCou(X?, V8 (b))

—r0C

co é h 9 h—1 r o

Z( ot 9 —(1+8) 2'5+h) + (—cu +— (1+ 8 E+h)
E £=1

+ E ( 1 + e)a’f“")

The calculation of this summations produces (ii). Finally, Lemma A.1 together
with (A.4) and (A.5) shows (iii).
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Proof of Lemma 2.3. It can be shown that

B{ 72 20 oK = )Xot = e = ) Koy — 1))

t=1 s=1

1 hi1—-h2-1
- ST - 080 - W e W, —
£=0
h1—1 )
FY (- OB )Xo~ 1) Kernm — 1) Keveons — 1)
E=h1—h2

n—1

+ Y (= OBX, — 1) (Xepn, — 1) (Kege — ) (Xeverne — 1)
£=hy
ha—1

+ > (= OB(X; — 1) (Xege — ) (Kppny — 8 Xiyesn, — 1)
-1

n—1
+ Z (n — OE(Xy — ) (Xeqny — 1) (Xpe — 1) (Xipgpn, — H)} (A7)
f=ha

where X; = XVB. Using (1.4),(A.2) and (A.3) after properly changing the order
of Xy, Xipe, Xiyethny, (A6) can be written in the form

hi—ha—1

1
Ao+ 5 DS (0 eme s aaat ™ 4 2agat s
£=0
+ HEy(hy — & = ha) +¥{(h1 — ha)v(€ + ha))
h1—1

- Z (n_f)(alaﬁkhg +a2a2£+h1 +2a205+h1+h2

£=hy—~hsg
+ E+ ha)y{hr — E) -+ 7 (E)¥(E — h1 — D))

n—1
+ Z (n _ g)(a1a€+hz 4 0.202'5+h'1+h2 + 2a2a2§+h2

E=hy
+ Y€€ — by — h) + (€ + ha)y(€ — A1)

ha—1
+ D (=&t 4 apo® T 4 2as0f R ()€ — by + Bo)

£=1

n—1

+ YE Rl — )+ Y (n—E)(a108t 4 agof TR 4 9g, o
§=h2



282 YouSung Park and Heeyoung Kim

+ (€ = ha + ha) (€ + )y (€ — )

re® 2E+h+1 A, +1
+ lZF Z(n—{)a e —fimﬁa“ 13}:
£=0

where v(-) = vVE(), a1 = g-gi and ag = ’"—B'Z—z. Subtracting V& (h1)y¥ 8 (hs) from
(A.6) and letting them n —+ oo after multiplying n, we have the results. The
second claim is obvious by {A.6) and Lemma A.1.

Proof of Theorem 3.1. First, define a sequence of (A + 2) random vectors by
Z{ﬁ = (X;:X:ngﬂX;Xtﬂrl: T JX;X?+h)

m
where X = Z o' « WP Since Z, is a strictly stationary (m + k) dependent
=0

sequence, one can show by m-dependent C.L.T. and Cramer-Wold device that

vl W) | Lyl wmQ | v,

where Xﬂ; = %2?;1 X mip) = %Z?:l(xt* - #m)(}fﬁp — i) fhm = %g‘(l —

o™ty (p) and Vi, such that v, (p) = ¥YF(p) and V,, = V as m — co. Note
that

Var(\/ﬁ(XfB—X’;)) = anr(%

1=1 i=m+1
6 r§? a(l —a™ 1)
— m+41 | 'Y 2(m+1)
(g + 0 )(1+2 . )
+0(n™Y)

Thus we have, for ¢ > 0,

lim lim sup P [\/ﬁ

m—oQ N—00

Xﬁﬁ)_(,jyﬁ——um—l-rr—l >£] =0.
Similarly, it can be shown by Lemma 2.4 that

lim lim supP[x/ﬁ Fm(P) = 7V F (p) = Ym(p) + ¥V E (p)] > E] = 0.

M—r 00 N—ro0
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This establishes the claim by an application of Proposition 6.3.9 in Brockwell and
Davis{1987) since py, — r8/8 and Vi, = V as m - oo,

Proof of Theorem 3.2. A simple algebra gives, for 0 <p < A,

n

V(i (p) — 4B () = \if > O =&~ )
=
FVa(RYE - m)[ ey L ZX”B T SR R

The first term in (A.7) is op(l), since

k1

> (XY - p) (X )| <
t=n—p+1

B pyVP(0) + dppt.

The second term in (A.7) is also 0,(1), since vA(X2 2 — 1) = 0,(1) and X7
converges to up in probability as n — oo by Theorem 3.1. This completes the
proof.
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