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An Efficient Method on Constructing £-Minimal Path
Sets for Flow Network Reliability'

Seung Min Lee' and Dong Ho Park’

ABSTRACT

An efficient method of constructing A-minimal path sets to eval-
uate the reliability of a flow network is presented. The network is
considered to be in a functioning state if it can transmit a maximum
Aow which is greater than or equal to a specified amount of flow, % say,
and a k-minimal path set is a minimal set of branches that satisfies
the given flow congtraint. In this paper, under the assumption that
minimal path sets of the network are known, we generate composite
paths by adding only a minimal set of branches at each iteration to
get k-minimal path sets after possibly the fewest composition, and
compute maximum flow of composite paths using only minimal path
gets. Thereby we greatly reduce the possible occurrence of redundant
composite paths throughout the process and efficiently compute the
maximum flow of composite paths gernerated. Numerical examples
illustrate the method,

Keywords: Flow network; Capacity; Maximum fHow; Composite Path; k-minimal
path set

1. INTRODUCTION

Evaluation of capacity related reliability of a flow network has attracted con-
siderable attention in the literature. The network is represented by a probabilistic
sraph {V, F), which consists of a set V' of nodes and a set & of branches (edges).
Each branch may have different flow capacity and the network may be required to
transmit a specified amount of flow from the source {input) node to the terminal
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(output) node. Some examples of such networks are a computer communication
network which allows only a fixed amount of data exchange among different ter-
minals of various computer centers, a transport system of a large town which
limits maximum traffic on various roads, and a hydraulic system which carries
gas or fluid through a pipeline network with capacity limitations. In these cases,
the performance of network is naturally determined by the amount of How that
can be transmitted from the source node to the terminal node and successful
operation of network is not necessarily characterized by connectivity only, but by
the maximum flow that can be transmitted through the network. The network
reliability is measured as the probability of successfully transmitting the required
amount of low {rom the source node to the terminal node.

A number of algorithms have been proposed to obtain the above capacity
related reliability. The method suggested by Lee (1980) is based on the concept
of lexicographic ordering and a labeling scheme is used to route the flow through
the network. Another approach given in Qiu and Zhong (1994) use the initial
valid group to generate all valid groups by successive replacement of branches
one by one. All the resulting valid groups are mutually disjoint and used to
evaluate the network reliability. Under the assumption that all minimal path sets
of the network are known, Misra and Prasad (1982) propose a method utilizing
a failure path list to enumerate the composite paths, but Rai and Soh (1991)
present a counter example to show that it does not generate enough compaosite
paths and fails to give correct results in general. Aggarwal et al. (1982) and
Aggarwal (1988) also discuss the similar methods based on the composite path
enumeration approach, but both have some drawbacks in computing maximum
flow of composite paths. Varshney (1994) expands the method of Aggarwal (1988)
to allow the branches having multiple states of capacities with corresponding
probabilities, and Schanzer (1995) argues with counter examples that it also fails
in certain cases. Raiand Soh (1991) try to complement and correct the drawbacks
of the preceeding results. The method generates composite paths categorized by
the number of minimal path sets involved in composition and uses minimal cut
sets to compute maximum flow. Hence, the method may generate a large number
of redundant composite paths and needs to find minimal cut sets from the given
minimal path sets.

Our method generates composite paths by adding, each time, only a minimal
set of branches to satisfy the network flow requirement afler possibly the fewest
composition, and compute maximum flow of composite paths using only minimal
path sets. Thereby we greatly reduce the possible occurrence of redundancy
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in terms of duplication and absorption throughout the process and save time
and efforts in computing maximum flow of composite paths. Section 2 presents
a simple method of computing maximum flow of a composite path using flow
augmenting paths, each of which is a minimal path set and illustrates the concept
of k-minimal path sets. Section 3 gives the descriptions on the methodology and
algorithm to construct all &-minimal path sets. Once the k-minimal path sets
are found, the exact evaluation of flow network reliability is straightforward. The
upper and lower bounds for the reliabilities based on the k-minimal path (cut)
sets are also discussed briefly. In Section 4, numerical examples are presented to
illustrate cur methods.

Notation ’
C: set of branches = {1,2,--- ,n}
ci: flow capacity of branch ¢
& : capacity vector = (e, ,cp)
X;: random variable indicating the state of branch ¢,

X — 1 if branch 7 is functioning
TP 1 0 if branch 1 is failed

X: random state vector = ( Xq,--- , Xy)
#: binary vector values that X can assume
pir P{X, =1}

M(% : &): performance of the network when X = #, defined as the maxi-
mum amount of flow that can be transmitted from the source
node to the terminal node

M(B)Y = M((1%,0) : &): maximum flow when branches only in B(C ) func-

tion.

2. MAXIMUM FLOW OF A COMPOSITE PATH

Assumptions

1. The nodes are perfect and each has no capacity limit.

2. The branches are independent and either function or fail with known proba-
bilities. .

3. All the branches are directed and each branch flow is bounded by the
capacity of the branch.
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4. No information or flow can be transmitted through a failed branch.
5. The network is good i.f.f. a specified amount ol flow can be transmitted
from the source node to the terminal node.

Nomenclatures

A vetor £ is said to be a k-minimal poth vector if M(Z : &) > k and M(7 :

&) < k for all § < 2. For a k-minimal path vector £, the set A = {i|z; = 1}

is called k-mintmal path set (k-mps). A vector % is said to be a k-minimal cut

vector if M{(% : &) < k and M{: &) > k for all § > &. For a k-minimal cut vector
Z, the set K = {i|z, = 0} is called a k-minwmal cut set (k-mcs).

We assume that all the branches are directed without loss of generality, since
an nndirecied branch can be replaced by two oppositely directed branches of the
same capacity as that of the undirected branch. A minimal path set {mps) of a
directed network is a minimal set of branches which, viewed as a path, connects
source node to terminal node. An mps, as a path, is not necessarily a directed
path. M{% : &) measures the maximum amount of flow that can be passed
through the network successfully, given #, and é. M (% : &) is non-decreasing in
each argument, and M((14,0) : &) = min,ca{c,} for a I-mps A of the network.
Note that an mps is & 1-mps if and only if it is a direcied path.

Let k, &k > 1, be a pre-specified amount of flow. Then, a k-mps is a minmmal
set of branches which ensures successful operation of the network. The network
reliability evaluation requires four major procedures:

(1) determination of all mps’s of the network,

(2) generation of enough composite paths to find all possible k-mps’s,

(3) computation of maximum fow for each composile path generated,

(4) transformation of the knowledge on k-mps’s into reliability expression.
However, (1) and (4) have been extensively covered in the literature. See, for ex-
ample, Aggarwal et al. (1982) and the references therein. Thus, we only discuss
(2} and (3) in details. The procedure (3) is essentially the same as comput-
ing maximum fAow of a network and can be computed by applying well known
methods such as Ford-Fulkerson algorithm. The method searches for a flow aug-
menting path, and then increase the flow along this path. See Ford and Fulkerson
(1962) for details. But ii is slow and difficult to computerize.

In this section, we suggest a simple method of computing maximum flow when
all mps’s of the network are known. Let f be a {easible flow pattern and let f;
be the corressponding flow value from s to £ with respect to f. An mps 4 is said
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to be a flow augmenting mps with respect to f if all forward branches of A are
not saturated, and all reverse branches are not flowless. Here, a branch 7 of 4
is said to be a reverse branch if in traversing from s to ¢ on A the branch i is
directed reversely to the given direction of { in the network. Otherwise, it is a
forward branch of A. We say that a branch i is saturated with respect to f if
f. = ¢, and is flowless if f, = 0. From the properties of flow augmenting paths,
we obtain the following lemma.

Lemma 2.1. For the shortest flow angmenting mps A with respect to f,

Fa= Fa + f(4)
where f{A) = min{minicr, (¢, — fi)yminier, (i)}, JI = fu + f{A) for i € Fy,
fi=Ff—Ff(A) for i € Ry, and F4(R,) is the set of forward (reverse) branches
of A.

By applying Lemma 2.1 repeatedly, we can easily compute M{% . &). Let
B = {i|lz, = 1} and rewrite £ = (1%,0), so that M (% : &) = M((1B,0) : &) =
M (B}. Then, starting with the zero flow pattern f =0, we find the shortest
flow augmenting mps A with respect to f , which is a subset of B. If there is no
such mps, then M{B) = 0. By applying Lemma 2.1, we have f,, = fo -+ f(4)
where fi = 0. We increase the flow of the network by repeating this process with
fst = f{A) and f = f’ until there is no more flow augmenting mps with respect
to f, ab which moment we have M(B) = f.

In the followings, we discuss some properties of a k-mps. Let 4 be a k-
mps. Then it is obvious that A is a &-mps whenever £ < &' < M{A4), since
M(A—{i}) < ¥ for i € A. Here, A — {i} is the set obtained from A by delet-
ing 4. Another useful property is that any k-mps, £ > 1, can be expressed as a
union of 1-mps’s. This is true since for each ¢ € A, it is always possible to find
a l-mps containing 4, say Ay, such that Agy C A and thus A = Uscadgy. We
note that the level k of an mps does not have to be integer-valued. The level ”17
is used just as a separating point between no flow (network completely failed),
and some flow (allowing partial functioning of the network). In general, if we lel
m = man{g|i € C}, then for 0 < a < m, a-mps’s are the usual l-mps’s. Our
main point is that we can construct any k-mps from the usual 1-mps’s. We also
note that there is no mps of level k£ for & exceeding M ('), which is the maximum
amount of flow possible when all branches of the network function.

3. k-MINIMAL PATH SETS AND RELIABILITY



302 Seung Min Lee and Dong Ho Park

A l-mps of the flow network is also a &-mps for &, 1 < & < M(4). However,
since a k-mps can be represented as a union of 1-mps’s, there is still a possibility of
constructing a k-mps by using 1-mps’s even when their maximum flow is less than
k. For example, let A; and As be two disjoint 1-mps’s such that M(A4,) = k1 < &
and M(Az) = ks < k. Then, A; and Az are not k-mps’s but 4 U As is a k-mps
if it contains no other l-mps as a subset and if max{k;, k2) < k < k| + ks, This
suggests that we can find k-mps’s as unions, which are called composite paths, of
different combinations of 1-mps’s whose maximum How is less than k.

This section describes an efficient algorithm on how to find all £-mps’s of the
network without producing much redundancy throughout the process. Iinding a
k-minimal path set is essentially adding or subtracting some branches and, each
time, checking the maximum flow of resulting set of hranches againgt the flow
constraint. Our basic idea is to add, each time, a choice of minimal set of branches
which gives maximal increase on maximum flow and such a choice is made from
the set of failure I-mps’s. In algorithm, we partition the set of all 1-mps’s into two
parts at each iteration; the current working sequence 2 and the corresponding set
of available 1-mps’s, FMPS say, each of which is not a subset of B. Initially we set
B =), and FMPS={all 1-mps’s}. With current B and FMPS, we find a suitable
choice A and construet a composite path B U A. A 1-mps A cFMPS is said to
be a suitable choice, if A gives the largest increase on maximum Aow among all
l-mps’s in FMPS' (CFMPS) where FMPS’ — {A'] there is no A" €FMPS such
that (4" — B) is a proper subset of (A" — B)}. Each time a composition is made,
the resulting composite path is tested against the requirement % using the method
described in Section 2. If it satisfies the requirement, report it as a candidate for
k-mps and repeat the process with B and FMPS=FMPS—{A}. If not, repeat
the process with B = BU A and FMPS=FMPS—{A}. If there is no choice, then
change the choice added last on B and repeat the process with the corresponding
FMPS. We also check M{ALL) to make sure that some k-mps’s are possible with
current B, where ALL is the union of B and all 1-mps’s in the corresponding
FMPS. We proceed only when M{ALL) > k and find all k-mps’s starting with 5.
The search for the k-mps’s terminates when it is found that no more candidate
for k-mps possible with B = §. The set of k-mps’s is obtained by removing the
possible redundancy in the final Iist of candidates at the completion of the process.

Algorithm:

To find all k-mps’s, given all 1-mps’s of the network,
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1. Imitially, set m =0, By = §, and FMPSy={all 1-mps’'s}.
If M{ALL) < k, then STOP, else go to 3.

2. Set FMPS,,=FMPS,, — {4 EFMPS,|A C By).
If FMPS,, =, then go to 5.

3. With B,, and FMPS,,, find a suitable choice A.
Set FMPS,,=FMPS,, — {A}.
If M(By,) + M(A) < k, then go to 4.
If M(B,, UA) >k, then report By, U A as a candidate for a &-mps and go
to 3.

4, If FMPS,,, = @, then go to 5.
Set Byl = By U A, FMPS,,(1=FMPS,,, m = m + 1, and go to 2.

B, Setm=m—1.
If m < 0, then STOP.
If M(ALL) <k, then go to 5, else go to 3.

Given the k-mps’s, the k-mcs’s can be generated by an inversion technique
described in Locks {1978). Once the k-mps’s and k-mes’s are given, the upper
and lower bounds for the flow network reliability can be readily constructed by
the well-known methods described in Barlow and Proschan (1982). We repro-
duce these bounds here for completeness. Let Ap,--- , A, be the minimal path
set and K7, -, K} be the minimal cut set of a coherent binary system. Then
the path-cut bounds and min-max bounds for the system reliability are given as

K by
JIRIEA Q1L
J=12€K, F=ldic4,

and

(1<T<p H P ’112l~l<lk H pi)’

respectively. These bounds are computed for the given network in the next sec-
tion.

4. NUMERICAL EXAMPLES
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Example 4.1. The bridge network shown in Figure 4.1 has the following fiow
capacity: ¢ = 6,0 =2,c53 = 1l,¢c4 = 3,¢5 = 2.

-

Figure 4.1: A Bridge Network

Firstly, we obtain all the 1-mps’s as A; = {1,4}, 42 = {2,5}, 43 = {1,3,5}.
To determine the 2-mps’s , we check first if M (4,) > 2,7 =1,2,3. Since M{A4;) =
3 and M{Az) = 2, both A and As are the 2-mps’s. However, M {43} = 1 and
thus Az is not a 2-mps’s. Since there is no candidates to generate more 2-mps,
the procedure ends and there are two 2-mps’s 4; and Ay, For 4-mps’s, none
of Ay, Ay and As is a 4-mps. Constructing composite paths, we have two 4-
mps’s A3 U Ay = {1,2,4,5} and Ay U Az = {1,3,4,5}. Note that Ay U A3 is
not a 4-mps, since M(A4z) + M(As} < 4. In the same manner, we generate
k-mps’s for £=2,3,4,5, as in Table 4.1. The table also lists the k-mes's and
the exact network reliability when £, = 0.8, ¢ = 1,--- ,5. For example, for
k=4, we have the reliability By = P{1,2,4,5} + P{1,3,4,5} — P{1,2,3,4,5} =
(0.8)* + (0.8)* — (0.8)° = 0.49152 by using two 4-mps's and the fact that the
branches are independent. It is also straightforward to compute the upper and
lower bounds for the network reliability by the path-cut methods and the min-
max methods which are given in Table 4.2 when p, =0.8,1=1,- - 5.

Table 4.1: k-mps, A-mes and exact reliability of the bridge network

k  k-mps k-mcs network reliability
5 {1,2,4,5} {1}{2}{3}{4} 0.4096
4 {1,245}{1,3,4,5} {1}H{4H5}{2,3} 0.4915
3 {14} {1}{4} 0.6400
2 {1,4}{2,5} {12H1,5}{2,4}{2.5}  0.8704
1 {1,4}{2,5}{1,3,5} {1,2}{1,5}{4,5}{2,3,4} 0.8909
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Table 4.2: Reliability bounds for the bridge network

path-cut bounds

min-max hounds

0.4096, 0.4096)
0.4915, 0.6514)

(0.4096, 0.8000)
(0.4096, 0.8000)
(0.6400, 0.8000
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)
0.8493, 0.8704)
)

)
(0.6400, 0.9600)
0.8777, 0.9367 )

(
(
(0.6400, 0.6400
(
( (0.6400, 0.9600

Example 4.2. A network shown in Figure 4.2 has 7 directed branches with the
flow capacity ¢1 = 6,60 = 2,¢c3 = 1,04 = 3,05 = 2,05 = 2,¢7 = &.

Figure 4.2: A 7-Branch Network

For illustrative purpaose, we apply our algorithm to find the 3-mps’s. The 1-
mps’s are obtained as 4; = {1,2}, Ay = {5,6,7}, A3 = {1,4,7}, 44 = {1,3,6,7}.
Since M(A3) = 3, 43 is a 3-mps. Constructing composite paths, 4, U As =
{1,2,5,6,7} and 4; U Ay = {1,2,3,6,7} are the 3-mps’s. Note that 4o U Ay =
{1,3,5,6,7} is not a 3-mps, since M{AzlUAs) = 2 < 3. Therefore, there are three
3-mps’s {1,4,7}, {1,2,5,6,7} and {1,2,3,6,7}. For this particular flow networl, its
reliability for k=3 is discussed in detatls in Lee (1980) producing the same result.
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