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A study on bandwith selection based on ASFE for
nonparametric density estimators

Tae Yoon Kim'

ABSTRACT

Suppose we have a set of data Xy,---, X, and employ kernel density
estimator to estimate the marginal density of X. In this article bandwidth
selection problem for kernel density estimator is examined closely. In par-
iicular the Kullback-Leibler method {a bandwidth selection method based
on average square error (ASE)) is considered.
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1. INTRODUCTION

Let X|,...,X, be independent identically distributed real valued random
variables. Consider the problem of estimating the marginal density of X in which
the well practiced kernel density estimator is employed,

Falo) = by 1 3o (2
=1

where K : B — R is a kernel function, h = A{n) € RT is the bandwidth (i.e,
smoothing parameter). One of the very decisive points in applying 4 is the choice
of the bandwidth £. Up to now most of work has been focused on searching for
optimal bandwidth minimizing integrated square error (75F). In this paper
the Kullback-Leibler method which is based on averaged square error (ASE) is
inveskigated as a possible alternative bandwidth selectar for fh. The Kullback-
Leibler method is designed to estimate ASE given by

dal) =t S TR - FOGIF (X ()

1=1
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where w denotes a weight function. Then its minimizer fq is often estimated by
finding ) &, the minimizer of

—2n"'log KLk -1 Z log [fj 0 UU&J (h)]

where jj K is “leave one out” version of fj; that i i3, the observation X, is left out
in constructing fj r. Here p(h) = [ fu(z)u (#)dz and u(z) = w(z)f(z). Marron
(1987) investigated the Kullback-Leibler method to establish its asymptotic opti-
mality with regard to ASE. Note that the above Kullback-Leibler method is more
natural in the important applications of density estimation to disctimination and
to minimum Hellinger distance estimation.

2. THEORETICAL RESULTS

Since Marron (1987), little has been done about the Kullback-Leibler method,
though their result surely needs to be stuided further for their practical use. Be-
hind this is that analyzing ASE based selector {e.g.,the Kullback-Leibler method)
usually requires gefting some difficult features resolved from analytical poink of
view. For example, behaviour of ASE should be addressed, which Lias been rel-
atively less explored compared to integrated square error (ISFE) (sce Hall (1984)
and Kim (1997) for possible references). In this article, we study the convergence
rate for the Kullback-Leibler method in density estimation. Recall

=n"" Z:l[fh(Xj) - f(X.i')]Zf_l(X:,')w(XJ)

and dpr(h) = Eda(h). Then the optimal bandwidth is hg, the niinimizer of the
average squared error d4(h) and let iy be the minimizer of duy (k). TIf f” is
uniformly continuous, then d4(h) and dar(h) are approximately

dm(R) =n A7 e + hiey (2.1)
with ¢y = [ K? and ¢y = [[ 22K (2)dz/2)? [(f)?, in the sense that

L )

(2.2)

sup (
in probability as n — oo, where H, = [n 1" n=%| for arbitrary simall > 0 (see
Marron and Hardle (1986)). Thus one may see that kg and kg are each roughly
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equal to the unique minimizer of dy,, bm = con~ % where ¢g = (01/402)1/5, that
8,

b s ha Pl — 1 (2.3)
in probability. In addition it has been proved by Marron (1987)

hg [ — 1 (2.4)

in probability. Now our objective is to study how fast the above convergence
occurs. For this assume that (i) X is a compactly supported, symmetric function
on R with Holder continuous derivative K, and satisfies [ K =1, [ 2K (2)d» =
2k # 0. (it) f is bounded and twice differentiable, f' and f" are bounded and
integrable, and f" is uniformly continuous. Let e5 = 2¢)¢5 % +12c,¢3. Set L(z) =
—zK'(z) and

o = @l ([ £ L)+ ahea®t | (7775 = ([ 1777},
Theorem 1. Under the preceding assumptions
n3/w(ﬁ1{ - fag) — N{Q, crfca—‘?)
in distribution.

Hall and Marron (1987) established convergence rates for the least square cross
validation method which is I5F based method. Qur result shows that the same
rate holds for ASF based Kullback-Leibler method for one dimension. From our
proof below one may see that extengion to higher dimension of our result is not
straightforward. Detailed work is left for the upcoming research.

3. PROOFS
Set
7
R =m0 w(X;) - ELA(X)w(X,)],
=1
S =" [u(X;)(1 —log f(X,)) — R].
i=1
And it i1s convenient to define, for j =1,...,n
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where & is the support of w. Then it follows that

—on"'log KL(h) = 8§ —2n~! i[u(xj)(l + log(1 + A,)) - 5(h) — R]

=5 2nt Zn:[u(Xj){l + A~ B(h) — Rl +dai(h) —2n~* ifrj(h)u(XJ)

1=1
where

dar(h 12[3‘}, X5} = FX)PF(X)  w(X,)

and r; denotes the remainder term of the log Taylor expansion. Now the above
expression is decomposed as follows.

n

S+2R+8(h) +dar(h) — 207"y 1y (k)
=1

=5+ 2R+ 8(h) + dar(h) + D1(h) + D(h) — 2n Z ry (R)u(X;)
7=1

where Dy = da1 —da, D =dq — duy,
5= [ Fre—n S X e(x
J

Then
0 =—2n""dlog KL{h)/dh = diys(hge) + &' (hs) + D) ()
7
+D'(hg) — 7S ek (hau(X,).

7=1
Using {2.3), (2.4) and Lemma 1 below one finds that

0= diy(hx) + 8 (hi) + Di(hc) + D'(hixe) — 20713l (hsc)ulX,)
=1
= (hac = ho)djy (") + &' (ho) + D' (hg) + 0, (n 719, (3.1)

where h* lies inbetween hg and hg. Now it is easily shown that

(hi = ho)ig(h*) = (b — ho)esn ™5 + o, (n~7/10),
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so we may refine (3.1) as follows:
0 = (hg — ho)ean 2% + D' (ko) + & (ho) + op(n=7/10).
Also we may have in a similar fashion
0 = (ho — ho)esn ™% 4 D' (ko) + op(n_"—’/m).

Subtracting:
0= (hg — ho)esn™% 4+ & (ho) + o, (n™7/1).

This result and Lemma 3.5 of Hall and Marron (1987) entail
n310 Ry — hp) = N{0, oles?)
m distribution.

Lemma 1. forony0<a<b<oandanyji=1,---,n
sup {|D} (n™58)] + |r) (™0 )u(X,)]} = op(n~ 1), (3.2)
a<i<h
For some e >0
s — ho| = Opln™/571) (3.3)

For some e > 0 and any 0 < o < b < oo,

sup {10'(n™ 178+ 5 (27} = Op(n ™). (3.4)

Furthurmore for any m > 0 and eny non-random h) asymptotic fo o conslant

multiple of n= /%,

sup  n" D) = D'(hy)| 4+ 8 (R) = ()} = op(1). (3.5)
|h—hy|<n-2/5m

Proof. Proof of (3.2} will follow if one shows that

sup (D1 001+ It )u(X)} = opr 710, (3.6)
a<t<

{3.6) can be established by using

fugl®) = falz) = (n = 1) fale) — (n = )R K (2 — X5) /h).
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and the fact that
sup !fp;(z) — flz)| = Op((nh)—l/'z)_
ESY)

To treat (3.3), notice that hx /hg = 1 in probability. As done in {3.1)

o, d L d o, d
on 1&ElogKL(h)fh:hD = n 1d—hlogKL(h)}h=h0 —n J@IOgKL(h)Jh:ﬁK

= d'y(hg) + 8'(hg) — dy (hi) + & (hg) + 0,(n"7/10)
= diys(ho) — dig(fre) + Oy{n 3157,

using (3.4) and (3.5). But 2n—lagﬁ10g KL{h)|n=ro = diy(ho) + Op(n™3°7¢) and
S0
Op(n 7€) = diyy(ho) — diy(hie) = (ho — i) (h")

where 1* lies between hy and hy. Using di, (k") = can™%° 4 o,(n™%%), (3.3)
follows. (3.4) and (3.5) will follow from Lemma 3.2 of Hall and Marron (1985),
(2.4) of Kim (1997), and (2.1). U
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