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A Bayesian Diagnostic Measure and Stopping Rule
for Detecting Influential Observations
in Discriminant Analysis

Myung-Cheol Kim! and Hea-Jung Kim?

ABSTRACT

This paper suggests a new diagnostic measure and a siopping rulefor
detecting influential observations in multiple discriminant analysis (MDA).
Tt 1s developed from a Bayesian point of view using a default Bayes factor
obtained from the fractional Bayes factor mathodology. The Bayes factor is
taken as a discriminatory information in MDA. It is shown that the effect
ol an observation over the discriminatory information is fully explained by
the diagnostic measure. Based on the measure, we suggest a stopping rule
for detecting influential observations in a given training sample. As a tool
for interpreting the measure a graphical methnd is used. Performance of the
method is examined through two illustrative examples.

Keywords: Multiple discriminant analysis; Influential observations; Discrimi-
natory information; Fractional Bayes factor; Diagnostic measure; Stopping rule

1. Introduction

In practical applications of MDA with K multivariate normal populations, it
is seldom wise to compute and report only the linear discriminant function. Gen-
erally one would wish to guard against, and check for, the possibility that some
observations do not contributes to discrimination of the populations. For this
purpose, many articles have been suggested diagnostic measures for the identifi-
cation of outliers and influential observations in discriminant analysis. Critchley
and Vitiello (1991) and Fung (1992) independently proposed two fundamental
statistics, in Fisher’s linear discriminant analysis (LDA), like the residual and
leverage measure in regression, on which many influence measures depend. By
means of the fundamental statistics, Critchley and Vitiello (1991) examined the
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influence of observations upon misclassification probability estimates in LDA and
Fung (1995) suggested a couple of Cook’s type diagnostic measures for detect-
ing outliers. For further references, see Johnson (1987) and Rencher (1995) and
references therein.

The studies mentioned above are mainly designed {or two-group discriminant
analysis. However, as pointed out in Fung (1999), a method for detecting influ-
ential observations in MDA has not been seen yet. The present paper considers,
however, a diagnostic measure for the influence of observations that can be appli-
cable to both fwo-group discriminant analysis and MDA. The diagnostic measure
is designed to detect observations influential on discriminatory information. It
is developed by use of a default Bayes factor and related to the conditional pre-
dictive ordinate {cf. Pettil and Young 1990). Section 2 derives the Bayes factor
via a development of the fractional Bayes factor method introduced by O’Hagan
(1995) and justifies the use of the Bayes factor as a measure of discriminatory in-
formation in MDA. Based upon the information, Section 3 proposes a diagnostic
measure for detecting influential observations in a training sample and develops
a stopping rule for the detection. In Section 4 the performance of the proposed
measure and the stopping rule is examined through two illustrative examples.
It also proposes a way of visual interpretation, especially by use of a graphical
method. A few concluding remarks are give in Section 5.

2. Discriminatory Information

Suppose we have K multivariate normal populations, Iy,... g each speci-
fied by a model M,, i = 0,1, where M; defines the distribution of each population
distribution Il ~ Np(ug, L), £ =1,..., K. Let our interest of model comparison
be homogeneity {or heterogeneity} of the mean vectors among K populations,
and let the model specification be p; = --- = g = g under My and under M,
g1 F# e FE K

We suppose now that X;(k),..., Xy, (k) denote independent p variate sample
of size N from ITg with distribution Np(ps, 2), & = 1,..., K, and suppose all
the independent samples (so called the training sample) as D. Then the training
sample D is to have arisen under one of the two models according to respective
probability densities given by

POz M) = (20 ) Fexp{ - stz o, )
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N N 1 _
f(Dl.U‘l: Ut 1P'K727M1) = (zﬂ)—_zﬂ|2|ﬁgexp{ - Etr[z 12{5:1 Q’k}}! (2)

where © = V + N{u — X)(n = XY, O = Vi + Nilux — X () (e — X (k)"
X(8) = 0 X, ()N, X = SEL N (RN, N = T N, Ve = T
(X, (k) — X(R)(X;(k) — X(R)Y, and V = SIS, T (X;(0) — KOG (B) — X'

To derive a measure of group separation {or equivalently discriminatory in-
formation), our interest focuses primarily on a statement concerning to relative
probability that 7 comes from one or the other of the model, and not about mak-
ing probability statement about where a parameter lies. Therefore, we shall use
a particular convenient prior densities, my and 71, to reflect an initial diffuseness
or vagueness about the unknown parameters (cl. Jeffreys 1961);

+1 +1
molp BIMp) oc [R5, s, p, SMY) o 275 (3)

Using the definition of the marginal likelihood (cf. Kass and Raftery 1995), we
may obtain, under the vague priors, respective marginal likelihoods conditionally
on Mg and M, that include undefined constants. Thus the use of the improper
priors (3) leads to well known problem called arbitrariness of Bayes factor {cf.
Berger and Pericchi, 1993). Various approaches have been advocated for dealing
with this problem. One is to remove the indeterminacy by a kind of thought
experiment as proposed by Spiegelbalter and Smith (1982). Another approach to
improper priors makes use of a training sample. This includes the partial Bayes
{factors by Lempers (1971), the fractional Bayes factor by O'Hagan (1995), and the
intrinsic Bayes factor of Berger and Pericchi (1996). Among them we will follow
(’Hagan (1995) in the use of a proportion b of the data to resolve the problem
of arbitrariness in the Bayes factor. The reason for adopting the fractional Bayes
factor is due to its good properties such as consistency, simplicity, robustness and
coherence (cf. (’Hagan, 1995).

Definition 1 {(’Hagan 1995). Let f(D|#;, M;) be ibe full likelihood based
upon model M, with parameter vector 8, and if the prior density of 8; has an
improper form denoted by 7(6,}34;). Then, for & € (0,1),

Bibj = Pb(DIML)/Pb(D|Mj): 17 ]

is referred to as an fractional Bayes factor of M, relative to M;, where

f W(Qlei)f(th Mz)dgi
J 7 (6:| M) £ (D8, M, )06,

Py(D|M;) =
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Using the definition we can eliminate the indeterminacy of the Bayes factor
of My relative to My (cf. O’Hagan 1995).

Lemma 1. Under the likelihoods {1} and {2), and the improper priors (3)
for the parameters in My and Ay, the fractional Bayes factor method yields
respective marginal likelihoods

_ —yse DoV —1)/2)}
_ pNb/2_(b—1)pN/2y N(b=1)/2 1o

K
_ pNB/2_(b-1)pN/2 - np—1y2 Dpl(V — K)/2)}

where b € (0,1) and T',{#} = zPlp—1)/4 H§=1 I'{¢— (j —1)/2}, a p-variate gamma
function.

Proof. Using the fractional Bayes factor in Definition 1, we have the marginal
likelihoods under My and M, as

J(2m) NP2 B~V )f2 o {f%u«[zflﬂ]} duds;

Py(D|My) = - ;
J(2m)=N/2| 5|~ (Nbtp+1)/2 ey {—gt'r[Eﬁlﬁ]} dpdX
and
J(2r)~NPRSmWAPIN2 exp £ L1 5K 0 VT, dppds:
FBy(D|M;) = { : }

{(2m) = Nbp/2| 52| —(Nb—E+p+1)/2 oy, {—gtr[z—l vE Qk]} (1, dugas’

respectively. Noting that if the integrands of P,(D|M,) are viewed as functions
of py they are proportional to p-variate normal densities. Completing the square
in py and integrations over uy give

J I g { der [ L 4]} s

PD|M,) = b??K/z(g?r)PN(b—l)ﬁ .
SR e {btr[x-1 0K | V) an

Now the integrands are a function of ¥ and they are proportional to inverted
Wishart densities, the integrations over £ on both numerator and denominator
are easily found to result in Py (D|M;}. Similar proof holds for the derivation of
Py(D|Mo).

Theorem 1. The fractional Bayes factor, BE;, of M; relative to M is given
by

_ D6V = K)/2)} L{(N ~ 1)/2)} , v
B = T (R TN )
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where b € (0,1) and A = !Ef:l Vkl/lV‘ ~ Ap g, a A distribution with « =
K—-1,8=N - K under My (cf. Anderson 1984).

Proof. Since BY; = P{D|Mp)/Py(D]|M1), substituting the result of Lemma
1 gives the Bayes factor.

It is noted that the Bayes factor (4) is closely related to MANOVA test statis-
tic, Wilks® A used for finding linear combinations of variables, 1.e. linear discrim-
inant function{L.DF), that best separates groups of multivariate normal observa-
tions {cf. Rencher 1995, p 311). Therefore, we can take B§, as an information
that measures a degree of group separation among multivariate normal observa-
tions used in MDA and call it as ”discriminatory information® in MDA, Following
remarks show that BS; can be taken as the discriminatory information.

Remark 1. In case p = 1, Bf is a function of F' test statistic of one-way
ANOVA s0 that

LGN — K)/2)} DIV 0/2) [, K -1
B = Fiw Ry 3) r{(mq)/z)}(l N—KF)

where F' = (N — K) 52400 Np(X (k) — X)2/((K - 1) O, &0 (XG(k) — X(8))
that follows F' distribution with degrees of freedom K — 1 and N — K.

N{b—1)
2

?

Proof. Substituting p = 1 in the expression of Bf; in Theorem 1, we have
the result,

Remark 2. In case K = 2 (i.e. Two-group discriminant analysis case), the
Bayes factor reduces to a function of Hotelling’s T statistic:

_ Dp{(bN —2)/2)} Tp{(N - 1)/2)} T
P = Lp{(N —2)/2)} F:{(W— 1)/2)} (H N—2>

where T2 = (M, No/N)(X(1) = X(2)Y'S (X (1)~ X (2)), § = (Vi + Vo) /(N ~2),
is Hotelling’s T statistic for comparing My with M.

N{b—1)
2

H

Proof. For K = 2, the Bayes factor in Theorem 1 reduces to B, = [',{(bN —

2) /23 p{(N }(IVI/IV1+V2D NO-1/2 /(T { (N — 2)/2)}Tp{(bN — 1)/2)}).
Since V = V1+I/)'2+Ek LN (X (k) — X)X (k) — X)', we have
VI/Vi+ Vel = V(i + V) Y|

= {1+ (MNo/NHX (1) - X(2))' (" + Vo) HX (1) - X(2))}.

Applying the definition of Hotelling’s 7-statistic in the last term and expressing
BE, in terms of the 7%, we have the result.
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Remark 2 is of particular interest as providing a Bayesian alternative to the
two-sample Hotelling’s T?-test. Furthermore, when p = 1 and K = 2, By
becomes a function of two sample {-test statistic for testing My against M,y such
that

N{b—1)
2

p  T{(bN —2)/2)} T{(N —1)/2)} t
Bor = Tv —2)/2)) T{GN = 1)/2)) (1 TN 2)

where N = N1+ Nz and ¢ follows ¢ distribution with N —2 degrees of freedom.

Hl

Remark 3. In discriminant analysis, as the training sample D) contains the
larger information of group separation, i. e. discriminatory information in MDA,
the value of Bgl becomes the smaller.

Proof. In the foregoing tesults we have seen thai the Bayes factor Bf, is
directly related with classical measures of discriminatory information. It has
inverse relation with Hotelling’s T2 for two-group LDA, while it is proportional
to Wilks” A statistics for MDA (cf. Hawkins, 1982 and McLachlan, 1992), and
hence these velations give the result.

The key question remaining in the use of BY; as a measure of discriminatory
information in I is the choice of proper b. For the chaice of b, (Hagan {1995)
formally proposed three ways to set the value of b: (i) b = my /N, when robustness
is no concern, (i) b = N~! max{mq, N~%/2}, when robustness is a serious concern,
and (iii) 6 = N~ max{my,log N}, as an intermediate option. Here mg denotes
the smallest possible sample size permitting a comparison of My to M. The
minimal training sample requires N; = p+ 1, N, =1, i =1,... K, i # 7, for
some 1 < 7 < K (since we need at least one abservation in each group, to estimate
pi (k=1,..., K) plus p further observation in order to be able to estimate 2.

3. Detection of Influential Observations

3.1. Diagnostic Measure

B, is seen to be used as a measure for discriminatory information (i.e. the
smaller By leads to the stronger evidence for the significant contribution to group
separation), so that we may make use of it to develop a diagnostic measure for
detecting influential observations in MDA. We see from the definition 1 that

J (0| M) [ (D60, M) f (09|05, M) d8,
J (0 M) F(D30i, M)° f (i |, M, )00,

Py(D|M;)
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= Py(Dy | M5) F (05| Dy M) 0 7P, for 6=0,1,

where D, denotes all elements of the training sample D except the rth obser-
vation Xy, r=1,. A

Let Bm\(?) is the Bayes factor of My relative to M 1 using all but rth obser-
vation in DD, then

f(ﬂ’(:rﬂD(r): JVIU) ) o

B b b _
B = Bl /Bl = (f(mcr)lDiT)’Ml)

where —1 < (b—1) < 0. This is (b — 1)th power of the conditional predictive
ordinate (CPO) ratio for model comparison that measures the contribution to
the adequacy of the model M| attributable to the rth observation. See Pettit
and Young (1990) and references therein.

Therefore, in order to find influential observations when using BE,, one has
to compute the B} = Bm\{ /B, for all observations in D, r = 1,2,... N, and
choose the rth observation, say X(,+) having minimal value of B,

If B0") > 1, the r*th observation contributes to the discriminatory informa-
tion for MDA; If BU™) < 1, it is ouilier observation influential on the discrimi-
natory information, where B) = Min{B(T); r=1,...,N} However, the value
of B7) > 1 (or< 1) does not indicate whether deletion of r*th observation is
enough to change our beliefs form, say, supporting My to supporting M;. To
assess whether deleting r*th observation changes our beliefs we have to compare
B(™) with Bgl. We illustrate this in later examples.

3.2. Stopping Rule

An advantage of using B (). besides its direct interpretation and simplicity of
calculations compared to the error rates criterion, is that it naturally provides a
stopping rule. Suppaose the subset Sy« of D achieves minimum BY, among all
subsets of size N* observations considered. Let B§ {Swy~) be the corresponding
value. Similarly for size N* — 1 we have Sy»—1 with Bgl (S+—1). Either the ratio

A(N* = 1,N*) = Bfy (Sn+-1)/BG (Sn+) (5)
or its logarithmic scale

CL(N*) = logyo BY (Sxwy(ry) — log1o Bl (Sn+), where Syeygy = Sne1,
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gives a criterion for measuring the increase in the discriminatory information.
When an additional influential observation is detected from the measure, the
number of observations used in MDA are to be decreased {rom N* to N* — 1.
So a stopping rule can be based on it by specilying a threshold value A which is
obtained by the Jeffreys’ scale evidence of the Bayes factor in Table I. If . (N*) <
A when the subsel Sy.\(y 18 used instead of Sy« for MDA there is an increase
evidence for M. Consequently Sy« favors model My more than Sy« does,
and hence its observations can be accounted for as having more diseriminatory
information for MDA than those of Sy«. Similarly, il Cr.(N*) > X one can say
that observations of Sy« have less discriminatory information than those of
Spe. According to the scale of evidence for assessing Bayes factors, shown Table
I, we may take A = —0.5. Thus Sy+ () with Cr(N*) < 0.5 might be thought of
as significantly better training sample set than Sy~ in MDA, Formally, we have
the following all subset approach: stop selection at step M if

Cr(M) = 1og 0 { Boy(San )/ Boy (Su)} = A,
while
Cr(N*) = logro{ BG; (Swe\(r)) /By (Sx+)} < A, N*= N-1,...,M~1, N-1> M,
where A = —0.5. Note that if Sy« \ Syary = { X} Cr(N7) = logys B

Table I. Logarithmic scale of evidence for assessing Bayes Factor

Range Evidence
logqg B[b,l > ) Supports My
0 > log o B > —0.5 Slight evidence against M,

—0.5 > logyy BY, > —1.0 Moderate evidence against My
—1.0 > logy g BY > —2.0  Strong evidence against Mg
~2.0 > logy, BY, Decisive evidence against My

4, IMustrative Examples

Two sampling experiments were carried out employing the diagnostic measure
and the stopping rule. For the calculation of the diagnostic measure for each
experiment, we asswme that its robustness is no concern and hence we set b =
mo/N. As a tool for visual interpretation, a graphical method is presented in this
section.
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4.1. Remote Sensing Data

To examine the performance of the suggested detection method for influential
ohservations, we use "Remote Sensing Data* obtained from SAS/STAT wuser’s
guide (1982 edition). The data on crops is collected for five crops and their
observations are grouped into five groups: corn, soybean, cotton, sugar beets,
and clover. T'our measures called z1 — z4 make up the descriptive variables.

By means of program using SAS/IML, we analyzed this data. MDA using
proportional (to sample sizes) prior probabilities for each group led to the actual
error rate (AER) = 0.667. As advocated by Rencher (1995), we estimated AER
by use of the cross-validation method. The discriminatory information Bf; =
2.9036 » 1077 indicates evidence for the significance discriminatory information
in the training sample. However as can be seen from Figure 1a, there is the largest
effect on B, when we omit the 26th observation {first observation in clover group)
yielding C5(36) = —2.017. In other words, omitting the 26th cbservation changes
Jeffreys’ scale evidence of the significance of discriminatory information in MDA

Table 2. Remote Sensing Data

Corn Soybean Cotton Sugarbeet Clover

el 22 ¥3 =24 zl 32 3 x4 2l 22 23 x4 =zl 2 3 x4 1l x2

16 27 31 33 20 23 23 25 31 32 33 34 22 23 25 42 12 45
15 23 30 30 24 24 25 32 29 24 26 28 26 25 24 2w 24 58
16 27 27 26 21 25 23 24 34 32 28 45 34 25 16 52 BT 54
18 20 25 23 27 45 24 12 26 25 23 M 54 23 21 54 51 &l
15 15 31 32 12 13 156 42 53 48 75 26 25 43 32 15 96 48
15 32 32 15 22 32 31 43 34 35 28 78 26 34 2 54 31 31

12 15 16 73 56 13
32 13
38 26
53 8
iz 32

According to our diagnostic measure, this observation can be taken as the most
influential observation among the training sample. We see that omitting the
influential observation leads to change of AER from .6667 to .5143. By use of the
stopping rule in Subsection 3.2, we detected all the influential observations. They
were found in the following order; {X(.);r = 26,27,36,34,23,33, 31,29, 22, 30},
where X,y is rth observation in the data set (see Figure 1b). To save the space,
figures are drawn only far the first stage (Figure Ia) and the final stage of the

3

32
25
61
3l
54
11
13
a7
G4
6
62

x4

54
34
21
15
62
11
71
32
32
54
16
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stopping rule (Figure 1b), and they note Cr = log;, BV for the influence of rth

observation,

Xy, r=1,...,N*. Thus we may well regard there are at least 10

influential observations in the data set. Moreaver, deletion of the 10 influential

Figure
N* = 36.

C,
2-
1L }
0_|'|Ifr||||.|411ﬁ f L L
N | T 1 |
-i4
23 Cogl38)=-2 107
—31 ......... T T L B e e rr
0 10 20 a0 40

la. ) Plot for the First Stage of the Influential Selection, where

ZJHHM«H/) ......... .r

Figure 1b. C; Plot for the Last Stage of the Selection Excluding 10 influen-
tial Observations, where N* = M — 26.

2 O o &8 o O & 9o

Step

9 | 2 3 + > & T i3 9 10

Figure 2. Change of AER Obtained from Each Step of the Stopping Rule.
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observations reduces the value of log;a B from -6.537 to -29.817 substlantially
increasing the discriminatory information. IFigure 2 depicts the change of AER
obtained from deleting influential observations in each stage of the stopping rule.
As noted by Figure 2, if we apply the stopping rule using the suggested diagnostic
measure we can reduce AER from 667 to .269. Therefore, Lhis example shows
that the suggested diagnostic successfully reveals the influential observations and
leads to decrease of AER, so that it may be used as a method for choosing
observations to be excluded for improving the performance of MDA

4.2. Bisbey Data

This data set listed in Huberty (1994 p. 277) was constructed by Gerald
D. Bisbey {1968). A sample of 153 students entering college was parlitioned
according to the college French course in which they enrolled. Thirty five (V| =
35) enrolled in the beginning level, Ny = 81 in the intermediate level, and N3 = 37
in the advanced level. The data consists of thirteen measures obtained on each
of the 153 students.

The purpose of this example is to demonstrate performance of the suggested
diagnostic measure of influential observaiions in MDA. By use of the diagnos-
tic measure C, = log BV} the stopping rule was again applied to the data
set. It detects 20 influential observations in the following order of selcction;
{Xppy v =132,30,106,67,125,123, 57,109, 9,75, 86,59, 19,111, 40, 117,
124,85,48,115} (see Figure 3a and Figure 3b). The deletion of 20 influential ob-
servations reduces log;p BY;, and AER from -87.6633 to -108.431 and from .1645 to
0526, respectively (see Figure 4). As the first illustrative example, this example

Cy(153)=-3.831

-3 A —

a 20 40 60 a0 190 120 140 1E0

Figure 3a. C, Plot for the First Stage of the Influential Seleciion, where
N* = 153.
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Figure 3b. C, Plot for the Last Stage of the Selection, Excluding 20 influ-
ential Observations, where N* = M = 133.

AER
Q.20
N
0.15“r [
0.10
- [ [ I I ] I
o.00 Step
O I 2 3 4 5 B 7 84 9 o111 1213 415 16 (17 18 19 20

Figure 4. Change of AER Obtained from Each Step of the Stopping Rule.

also confirms us that the suggested diagnostic measure and the stopping rule 15
useful tools for detecting influential observations and improving performance of
MDA. In this caseiwe may reuse 20 influential observations in the following way:
Construct an optimal classification rule, and then allocate them into one of the
three groups based upon the optimal rule.

5. Concluding Remarks

We proposed a new diagnostic measure for delecting single influential ab-
servation in MDA, When we apply the measure sequentially, it could also be
useful for identifying multiple influential observations. The measure is developed
from a Bayesian point of view using a default Bayes factor that can be taken as a
Bayesian discriminant criterion in MDA. Based on the criterion, we suggests a di-
agnostic measure and a stopping rule for detecting observations that deteriorates
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the discriminatory information. The diagnostic measure may be interpreted as
incremental contribution to the discriminatory information in MDA attributable
to a single observation. Tlustrative examples in Section 4 confirm us that the
suggested diagnostic measure and the stopping rule is useful tools for detecting
influential observations and improving performance of MDA.

The proposed measure can be easily extended to detect multiple influential
ohservations in block avoiding the masking problem (c¢f. Rousseeuw and Zomeren,
1990) and to detect influential observations in multiple discriminant analysis with
heterogeneous covariance matrices. These problems are worthy to study and are
left as a future subject of research.
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