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The Cusum of Squares Test for Variance Changes in
Infinite Order Autoregressive Models
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ABSTRACT

This paper considers the problem of testing a variance change in infinite
order autoregressive models. A cusum of squares test based on the residuals
from an AR(g} model is constructed analogous to Incldn and Tiao (1994)°s
test statistic, where ¢ is a sequence of positive integers diverging to co. Tt is
shown that under regularity conditions the limiting distributicn of the test
statistic is the sup of a standard Brownian bridge. Simulation results are
given to illustrate the performance of the test.

Kegwords: Cusum of squares test, testing a variance change, infinite order au-
toregressive models, a Brownian bridge.

1. Introduction

The problems concerning variance changes for random observations have at-
tracted considerable attention from many researchers. For example, Hsu (1977)
investigated a test for variance changes in iid samples when the points of change
are unknown. Wichern, Miller, and Hsu (1976) considered a procedure for esti-
mating unknown parameters in AR(1) models with a sudden change of variance
af an unknown time. Abraham and Wei (1984) studied the same problem within
the framework of Bayesian statistics. Baufays and Rasson (1983) proposed an
iterative algorithm for obtaining maximum likelihood estimates of change points
and variances for given autoregressive parameters, and conversely those of the
autoregressive parameters for given change points and variances. Davis, Huang,
and Yao (1995) considered a test {for the changes of the parameters and the or-
der of an autoregressive model, namely, a change from an AR(pp) model with
white noise variance o to an AR(p|) model with white noise variance o3, They
studied the asymptotic behavior of the Gaussian likelihood ratio statistic. Tsay
(1988) proposed a method to detect outliers, level shifts, and variance changes
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in ARMA models. He used the least squares techniques and residual variance
ratios for treating them in a unified manner. Meanwhile, Tang and MacNeil
(1993) demonstrated that serial correlation can produce striking effects in the
distribution of a change point statistic, and provided a precise adjustment that
accounts for the serial correlation. For a general review of change point problems,
see Usorgd and Horvdth (199%).

Recently, Incldn and Tiao (1994) proposed the cusum of squares test for
variance changes in iid normal r.v.’s as a centered version of the cusum of squares
test of Brown, Durbin and Evans (1975), who considers the problem of testing
the constancy of the coeflicients in regression models. Inclén and Tiao’s test is
based on the following statistic:

k 52 k
=1 ’
IT, = 1ré1ka<xn(n/2)1/2 _;:‘1_1?% _ __' {(L.1)
- = J=1"3

A large value of IT;, rejects the null hypothesis that no variance changes oc-
cur. The critical values are obtained asyraptotically using the fact thai I7}, has
the same limiting distribution as supy<,<; |B°(t)|, where B° denotes a standard
Brownian bridge. As well as testing variance changes, they discussed a way to
estimate the positions of variance changes, using the so called I, plot. The £,
plot is demonstrated to detect variance changes more drastically than the plot
of the ordinary cusum of squares statistic. The method is based on the fact that
the point where the signs of the slopes of the plot. change is likely to be a change
point with high probability. See also Kim, Cho and Lee who cansidered the same
probiem in GARCH (1,1) processes.

In this article, we intend to demonstrate the validity of Incldn and Tiao’s
test for autoregressive models since little study of the usefulness of the test in
autoregressive models was made in their article. To this end, we adopt the
infinite order autoregressive process as our basic model since we focus on detecting
variance changes rather than the order change of autoregressive models. In fact,
Lee and Park (1999) considered the same problem in the infinite order moving
average context. They showed that Inclan and Tiao’s test works adequately only
when the data is not highly correlated. Since in general, the approach of using the
AR(oco} models discards the effects caused by correlation, here we take account
of the AR(ce) model.

In Section 2, we construct an Incldn-Tiao type statistic based on the residu-
als which are obtained by fitting a long AR{q) model to data, where ¢ depends
upon n and should be properly chosen. It is shown that the test statistic behaves
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asymptotically the same as the sup of a standard Brownian bridge provided g
meets some regularity conditions. Simulation results are reported in Section 3,
where it is shown that our test works properly even for highly correlated data.
In actual practice, one may argue whether our method performs ag well as the
one based on the AR({q) models, where the order g is chosen through a model
selection criterion such as the AIC (Akaike’s information criterion). Those two
methods are compared in our simulation study. Related results are also provided
in Section 3.

2. Cusum of squares test

In this section, we propose a cusum of squares test in AR{c0) models by anal-
ogy with Inctdn and Tiao’s test statistic. Consider the AR(c0) model satisfying
the diflerence equation

oo
Xe— Y BiXey = e, (2.1)
=1

where the £; are iid r.v.’s with mean zero, unknown variance o and finite fourth
moment, and the function A(z) = 1 — 3772, f;27 is analytic on an open neigh-
borhood of the closed unit disk 1 in the complex plane and has no zeroes on .
This assumption implies that the coefficients £, are geometrically bounded, i.e.,

18;] < Cp'y C>0,0<p<1, (2.2)

The model (2.1) covers a broad class of stationary processes including causal and
invertible ARMA.(p, ¢) models (cf. Brockwell and Davis, 1990).

In order to construct the cusum of squares, we fit an AR(g) model to the
data, where g = ¢, is a sequence of positive integers that are no more than » and

diverges to oo. Assume that X7,..., X, are observed. Solving the equation:

d n q

b, (X - SBX =0, j=1....4

J t=g+1 7=1

we estimate [, = (By,- - ,ﬁq)' by @:n = (Bl, e ,ﬁq)', where
T i
N P
B = Z X&) Z Xy Xt (2.3)

t=g+1 t=g+1
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where X, = (Xy,--- ,Xt_qul)'. Define the residual
Ee=X—fn X, |

Let 72 = Var{e}) and let

1 n 1 (2 .
GP=—— % & and #¥=— Y g -5

[ ] [Ca P}

Before we state the main theorem of this section, we introduce a lemma.

Lemmna. Suppose that the g satisfy

n_1/2q2 logn — 0 and n7/4qrq — 0 for all re{0,1).

Then,

| B — B IP= Onla/n).

(2.4)

(2.5)

Remark. The first expression in (2.4) says that ¢ should not be so large that the
AR model is overfitted. On the other hand, the second implies that ¢ should not
be so small that the approximation is meaningless. A typical ¢ satisfying (2.2) is

c(logn)® with ¢,d > 0, or un? with u > 0,0 < v < 1/4.

Proof. From (2.3), we can write that

. ~

t=g-+1 t=g+1 J=q+1
T ; 7
_ -1
= (Z X&) Z Xy 1€
t=g+1 t=g+1

(XX 0T XY A

i=gq+1 t=gt1 jemgt1
= L]_+L2, say,

By Lemma 3.3 of Lee and Wei (1999), we have that
I 2 ||*= Op(n"'q).

Meanwhile, L9 can be rewritten as follows

1 n ; -1 1 n cO
ng( Z z{t—l‘z(t—l) ( Z X 2 ﬁJXf“J)'

L PRt [ it =g+l

Bn—Bn = (Z *Xf,_l-?‘(;_ﬂ_l Z ,th_l[gtJr Z ﬁth—J)
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Note that

T , 1
(= Y X Xi) 1=0s) (2.7)
n qt g+l

due to Lemma 3.1 of Lee and Wei (1999). Further,

n

oC q Ti 2
FS xS AP = Y Z X203 BiXey),

t=q+1 j=g+1 i=1{= J=g+1
and hence
g T o0 q n oo
| Z Z X2 Z ﬁth—j)z HE < Z Z EXfﬂ.( Z 53Xt—3]2
i=1t=q-1 i=q+1 i=1t=g-}1 F=g+1
q n [a's}
< 3% BRXEAEVY BiXe,)'F
i=1 t=q+l 1=q+1
= Ofng( Z 18,1)%) = O{ngp™),
J=q+1

where we have used Minkowski’s inequality and (2.2). This with (2.7} yields
ILs||? = Op(qp®/n). Therefore, in view of (2.6), we have || A, — 8, "=
Op(n~'q). ]

The following is the main result of this section.

Theorem. Suppose that (2.2) and (2.4) are satisfied.

— 252 | TR 82 k-
T o t=q+1 5t q
T, = max ( g,) T 1 =T 4{, sup | B%(ull, (2.8)
q+l§k$ﬂ T E t=g+1 EE n q b<u<l

where B? denotes a standard Brownian bridge.

Proof. It suffices to show that
k

qu<k<n|It§1( —i)] = 0. (2.9)
Write that
5? = Z BiXe—y) +{( 511 oy 1}2
j=q+1
+ 2 Y BiKey t2a(B— B X, +20 Y BXeg) (B — Ba) Xy}
i=g+1 J=q+1

i
= EE-}—ZIM, say.
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First, note that by Minkowski’s inequality,

K " =
1 1
E{ max | Z fﬂ‘}g _ﬁ Z ( Z IﬁlelﬂzXf—j)zz

v/ etisk<n it t=g+1 j=q+
which together with (2.2) yields that

- | Z In| = Op(v/nd™) = op(1). (2.10)

\/ﬁq+1<k<n

Second, in view of the Lemma, we have

~ 5 1 n )
q+IlIl£a.’3(<n|_th—:H ItEl S ” )(in - /gn ” ﬁtzz(ﬁzl H Xt 1 ||
= Op(g*/vn) =op(l). (2.11)

Third, it follows from Doob’s maximal inequality that

k
%q+l<}c<n| > lul = f Z B51) n ’ Z e1Xi—y| = Op(p?)(2.12)

=q+1 j=q+1 t=g+1

Again using Doob’s maximal inequality and the Lemma, we have

k k
\/_ e t;_l L] = |l én — B || %qﬂlﬁa}&n i t:;H e X, |
= 0p(¢*?/yn) = op(1). (2.13)
Finally, using the Schwarz inequality, (2.10) and (2.11), we have
1 k
i g19ksn | t:Zq;Llfts |= Op(gp) = op(1). (2.14)
Combining (2.10)-(2.14), we have (2.9). This completes the proof. O

The Theorem shows that our test statistic behaves asymptotically the same
as the one based on true errors provided the g are properly chosen. The critical
values corresponding to given significance levels are available from an existing
table (cf. Incldn and Tiao, 1994, page 914). For example, we reject the null
hypothesis if T, > 1.358 when the significance level is 0.05.
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3. Simulation results and discussions

In this section, we evaluate the performance of the test T, in the Theorem
through a simulation study. In order to generate data that follows an AR({oo)
model, we consider the ARMA({1,1) model X, = ¢X,_, +¢&;,+8z;_1, where the ;
are 1id standard normal random variables. We do this because it can be rewritten
as an AR(oco) model if |#] < 1. The data for our simulation study is generated
from the above model with ¢ = 0.1,0.5 and 0.8 and # = 0.5. In each simulation
100 initial observations are discarded to remove initialization effects. Throughout
this simulation study, we used ¢ = 2[n"/5] as the order of the long AR model. The
empirical sizes are produced with 100, 200, 300 and 500 observations. The figures
in the ‘size’ section of Table 3.1 indicate the ratio of the number of rejections of
the null hypothesis out of 2000 repetitions. They indicate thai the sizes are not
much affected by the correlation of the data, which is not true for the test hased
on the observations themselves,

In order to examine the power, we consider the alternative hypothesis

H; EJNN(Ual): j:l,,_.,[n/‘Z],
EJNN([]&A) j:[n/2]+1!:na

where n denotes the sample size and [n/2] is the point where the variance change
occcurs. For A = 1.5,2.0,3.0, n = 1006, 200, 300, 500, and the ¢’s and & are as
mentioned above, the number of rejections of the null hypothesis are calculated
out of 2000 repetitions. As might be guessed, it can be seen that the powers
increase as either A or n increases. Compared to the case of an iid normal
sample (cf. Incldn and Tiao, 1994), the powers are somewhat low. However, the
powers improve remarkably for fairly large samples. 1t can be observed that the
powers are not affected much by the value of ¢. This enables us to conclude that
the test performs analogously regardless of whether the data is strongly correlated
or not.

As mentioned in the Introduction, one may argue whether the test performs
better if one selects an autoregressive model whose order is determined through
a model selection criterion. Taking account of this aspect, we performed a simu-
lation with autoregressive models whose orders are determined by the AIC. We
picked it up since it is asymptotically efficient in the sense of Shibata (1980).
The sizes and powers are produced and summarized in Table 3.2. There, we can
observe that the powers are no more than those in Table 3.1, although the gaps
are slight. Although not reported here, we have had a similar experience with
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the BIC (Bayesian information criterion). The results suggest that the gains, if
any, obtained by model selection criteria are not so much as one might expect.
So far we have seen that our method using Inclin and Tiao's approach works
properly in autoregressive time series models, as long as the data is suitably fitted
by a long AR model. Particularly, we could see that it is not necessary to go
through the step of selecting the order of the autoregressive model. Although we
do not discuss the details, the Dy plot as used in Incldn and Tiao can be applied
to the detection of multiple variance changes. It is believed that most of the
properties of the Inclan and Tiao’s statistic in the iid sample are also enjoyed in

our setting.

Table 3.1. The empirical sizes and powers of Ty,; g = 3 for n = 100, 200, 300
and g = 4 for n = 500.

size 100 026 034 .026
200 0370 034 029
300 033 033 .038
500 038 040 036
A=1.5 | 100 A19 117 115
200 g36 332 338
300 Ah23 0 500 519
500 787 788 793
A=2.0 | 100 369 358 343
200 783 773 784
300 956 949 044
500 998 999 998
A=3.0 | 100 739 768 752
200 594 998,993
300 || 1.000 1.000 .999
500 || 1.000 1.000 1.000
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Table 3.2. The empirical sizes and powers of T;, based on the AIC method;

g="5, 6,7, 8 for n =100, 200, 300, 500, respectively.

( ¢

n g b B

size | 100 || .026 029  .023
200 | 035 .032 .026

300 | 026 .030 .029 |
500 || .043  .037  .038
A=15|100] .118 .120 .111
200 | 327 313 .319
300 || 512 495  .498
A=201]1001 357 336 .318
200 | 772 733 772

300 || 951 942 941 |

500 || 998 999  .998
A=30 1001 721 742 725
200 | 992 992 991
300 | 1.000 1.000 .999
500 || 1.000 1.000 1.000
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