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ABSTRACT

The estimates from an EM, when it is applied to a large causal model of
10 or more categorical variables, are often subject to the initial values for the
estimates. This phenomenon becomes more serious as the model structure
becomes more complicated involving more variables. In this regard, Wu (1983)
recommends among others that EMs are implemented several times with
different sets of initial values to obtain more appropriate estimates. In this
paper, a new approach for initial values is proposed. The main idea is that we
use initials that are calibrated to data. A simulation result strongly indicates
that the calibrated initials give rise to the estimates that are far closer to the
true values than the initials that are not calibrated.

Key words: Bayes estimation, calibrated initial values, discrepancy, Dirichlet prior,
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1. Introduction

EM (Dempster et al, 1977) is a most popular method to estimate parameters of a
model which involves latent variables. It is easy to understand and the algorithm
consists of two operations, expectation for the missing variables and
likelihood-maximization. Literature abounds about the EM concerning the issues of
applications, convergence rates, and a variety of improved versions of it (see, for
example, van Dyk and Meng (1997)).

This paper confines attention to EM algorithms for recursive models (Lauritzen and
Wermuth, 1983) of categorical variables only. Recursive models of categorical
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variables pertain to an exponential family and so the maximum likelihood (ML)
estimates for such models are easy to obtain when data are complete and so is the
corresponding EM. But when the model is large and complicated, we often see that
estimates from an EM are sensitive to the initial values of the estimates (see for
example Wu (1983)). For this reason, we would often apply an EM several times
with different sets of randomly selected

initials and select the best-looking estimates out of the collection of the EM outputs.

When the relationship among the variables involved in a model is causal, we
usually call such a model a causal model. When the relationship is causal, the
corresponding model structure is recursive. So I will use both terms in this paper and
cail a model recursive when its structure is stressed and causal when the relationship
is stressed.

In this paper, I will propose a selection method of initial values by applying the
notion of calibration, which will be described in detail in a later section, and show, by
a simulation experiment, that the initial values by the method yield estimates that are
far closer to the true values than randomly selected initial values. A main idea behind
the selection method is that we select initial values so that their marginals on the
observed variables are equal to data.

This paper consists of 8 sections. Section 2 presents graphical terminologies that
will be used in the paper, and section 3 describes a basis of the selection method of
initial values that will be proposed in this paper. Section 4 then builds the main
result of the paper upon the basis of section 3. Sections 5 and 6 present simulation
results, calibrated initials being used in the former section and randomly selected
initials in the latter. The results strongly recommend using calibrated mmtials. Section
7 tuns our attention to Bayes estimation which may help make the final estimates
more appropriate for a particular variable, and section 8 concludes the paper with

some discussions.
2. Directed Acyclic Graphs and Terminologies

The relationship among the set of variables that are involved in a recursive model
can be represented by a directed acyclic graph (DAG). An example of DAG is
displayed in Figure 1. The circles and boxes in the figure have a particular meaning
and it will be described in a later section. As illustrated in the figure, a DAG
consists of nodes and arrows (or directed edges). @ — b stands for that the state of
b is influenced by the state of «. In this situation, we call node « a parent node of
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node b and call b a child node of . We will denote by pa(v) the set of the parent

nodes of v and let fa(v)= v U pa(v). The node which does not have any child
node will be called a terminal node, and the node which does not have any parent
node will be called a root node.

We will denote by V the index set of the variables that are involved in a given

model. We will denote by ¢ 4 the cell entry of the contingency table of the variables
indexed in A, by [ 4 the collection of all the possible 7 4's, by ¢ the cell entry of
the contingency table of all the variables involved in a given model, by m 4(7 4) the
cell mean at the cell entry 74 of the contingency table of the variables indexed in

A, and we will use # instead of m to represent the observed frequency. We will

denote by & the index set of the observed variables. Estimates will be hatted on the
corresponding parameters. Cell entry will also be called configuration.

3. Initial Values and Subjective Probabilities

We may use a model where all the variables involved are independent and generate
random numbers to obtain initial values for an EM no matter what the level of
complexity of a given recursive model is. But in practice, such a random number
approach would take a longer time until convergence and vield estimates that look
inappropriate. A rule of thumb of the selection method to be proposed in this paper is
that we pick the inmitial values for the ML estimates so that the intrinsic relations
among the variables may be consistently incorporated with observed data. By
consistency I mean that the observed frequencies for the observed variables and
experts’ opinions on the relations among the variables that are expressed in terms of
subjective (conditional) probabilities (Savage, 1972; Kyberg and Smokler, 1980)are
combined into a system of equations as in

A X=x= ie%x) W dpa(X) =1 Y(pa(X) = 1), (1

where HX=2x) denotes the relative frequency that the observable X takes on the
value x, Hadpa(X)=1) denotes the subjective probability that X=wx given that
pa(X) =1, ¢(pa(X)=1) denotes the subjective probability that pa(X)=71, and the
summation goes over all the possible configurations of pa(X).

In practice, ¢(xpa(X)=1) is determined relatively more easily than ¢(pa(X)=1).
For instance, the conditional probability that a student gives a correct answer to a
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test item conditional on that the student has a certain state of knowledge may be
relatively easier to guess than the marginal probability that the student has a certain
state of knowledge. In the next section we will see how we can use the initial
subjective conditional probabilities and data and obtain initial values for the marginal
probabilities for the root nodes of a model.

It i1s reasonable to assume that a better state of knowledge corresponds to the
probability of a correct response to a test item which is at least as high as that
corresponding to a poorer state of knowledge. We will say that an order distortion
(OD for short) occurs when the estimate of the probability of a correct response to a
certain item is higher for a poorer state of knowledge than for a better state of
knowledge. When the initial values were selected at random, we would often see the
OD phenomenon in the ML estimates.

Jeong et al. (1993) showed, using simple model structures, an empirical result that
when we use randomly selected initial values, we may see the undesirable OD
phenomenon far more often than when we select the initial wvalues incorporating
subjective conditional probabilities and data in a consistent manner. While Jeong et
al. considered simple model structures, we will not put a limit on the structure of a
causal model in this paper and derive a general approach for selecting initial values
that incorporates subjective conditional probabilities and data in a consistent manner.

4. The Notion of Calibrated Initial Values

We will begin this section by looking into the geometry of EM as
applied to recursive models of categorical variables. The E-step is implemented

through the expression
- 5 ()
. N (r+1) - L V(Z)
mV(Z) —na(za) ~ .

m a(l a) @

) . ~ +1 .
Once carried out, the new estimates m V(r ) satisfy that

m 5(i5) TV = o(i p). 2)
That 1s, when the new estimates are marginalized on 6, the marginals are the same
as M5 Assuming that V is of K variables, we can see that (2) means
geometrically that the points (7, 7(2) ") lie in the hyperplane ™ given by
Hy = {(4, m(2));m (i 5) = n (i 5) for all possible configurations 1is}.

On the other hand, the M-step is implemented through the expression
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ZORSREE | BICH ISR (3)

where

T (»
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The right-hand side of (3) represents the model structure for V, which is also
representable in terms of conditional independence (Dawid, 1979; Pearl, 1988;
Whittaker, 1990). A set of independence relationships among V defines a hyperplane
for (i, m(7)). A good example is given in section 2.7 of Bishop, Fienberg, and
Holland (1975), where a hyperplane of independence of two binary variables is
displayed.

We will denote the hyperplane defined by a given model structure by H. Then the
points (7, m(2) ") obtained by (3) must lie in Ha. Therefore, the final estimates
from an EM must be found in *; (..

The EM problem is an optimization problem for the likelihood function where the
domain of the likelihood function is confined to Hi(H2. When M: (H: is of dimension
4 or higher, it is hard to see if a set of final estimates from an EM corresponds to
the global maximum point of the likelihood function or a local maximum point. The
key idea behind the selection method to be proposed in this paper is that the initial

values, {m(3) P} ,c;, , be selected so that the point ( #(3) @, iel,) may be

contained at least in Hi.

The initial estimates, whether they are obtained from experts’ opinions or not, may
not be contained in .. When the initial estimates are from a group of experts and
not contained in M, it is like we begin an EM process with a set of initial values
that may be meaningless to the experts. In this respect, it is desirable that the initial

values, { 72(3) 7y ;1. » 100K reasonable to experts and that
(m() @, iely)emn (4)

After an E-step, ;ﬁ(r) will be in M., and after an M-step, it will lie in H2 but
may not be in Hi[)H:. The estimates may stay in Mi[)H, after some number of
iterations of the E and M-steps.

—~ (#)
Once m & M (M2, we have

PUALIN ISP

—~ (r+2)
wm

As a matter of fact, we stop an EM process when from an M-step falls
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within some neighborhood of m @ from the preceeding M-step. This implies that

i ) ~ (42 ~ (r+2 -~ . .
the final estimate m(H) from an EM, unless m(r )= m(r), is not in Hi (VM2

but located at a point in H» which lies close to M1 { \Hz. This observation suggests (4)
as a desirable property of initial values, and the simulation results of section 5 are
strongly in favor of (4).

Expression (4) is achieved by the process described below, where we assume that

only the variables of the terminal nodes are observable:

(a) Determine ¢(ul7 5u,)) for every non-root node v.

(b) Assign arbitrary values in (0,1) for the marginal probabilities of the root nodes
of the model structure.

(¢) For each root node ¢', obtain the mean of the conditional probabilities
{p(v'|v)} yey» Where ¥ is the set of observed vector-values y for the vector
of the terminal nodes of the model structure.

(d) Replace the arbitrary values assigned in (b) for the root nodes with the
corresponding means as obtained in (c¢). This replacement along with the
subjective probabilities given in (a) vyields a set of initial values of the
estimates that satisfy (4), as will be proved in Theorem 1.

Step (d) completes the process for generating the initial values, {7 (7)) ¥} el

We will now see why these values satisfy (4). Consider a simple model M of two
categorical variables A and X which are dependent upon each other. Suppose that
A is latent and X is observable, and denote the observations by x,,%3,,%x 5. We
may assume that we have a set of subjective probabilities of X given A and
choose arbitrary values in (0,1) for the marginals of A. For observation x,, we
can obtain, using the assumed subjective probabilities and the arbitrary values for
the marginals, the conditional probability P(A=17 4| X=x,), for i,=1,4. Denoting
the mean of the conditional probabilities by 7 A=17,) for eaéh 7 4, we have

HA=1,)= z_)‘;’X]J(lélzz'A|X=z'x)?(X:Z'x), (5)

where M X=17x) is the relative frequency that X=17y out of the N observations

for each 7 yely. The following result is an immediate application of (5).
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Theorem 1 Consider two categorical variables A and X, where A is latent and
X is observable. Suppose that the conditional probabilities of X given A are
known and that the data, x{,xs,",xn, are given for X. Then, for a set of arbitrary

values in (0,1) for the marginals of A, there exists a marginal of A (denoted by
HA=1i,)) as given by (5) that satisfies

2 HA=iDPX=igA=in=nX=iyx), forix=lx. )

Proof For a particular configuration ¢y of X, we have

ZZA: KA= iA) P(XZZ.X{A:Z-A)
22( IP(A=z‘AIXZz';MX=z'}))P(X=z';AA=z'A)

-2 (%P(X=Z'X|A=iA)P(A=Z'AlX:i;())r(X=i})
= 2 E(AX=idANX=in(X=i)
ZT’(X:Z'X)-

The first equality in the proof follows from (5) and the last equality holds since

. —+y—[ 0 when ix+#iy
E(A(X=1idANX=1i%) {1 otherwise.

O

When the probabilities #(A=1i,4) as in (6) are used for A, we will say that the
initial values, {m(?) 0y 1., are calibrated to data (or calibrated for short).

We can extend the theorem to a recursive model of K latent wvariables,
A, --,Ag and J observable variables, X, ,X; where the observables are all
terminal in the corresponding directed acyclic graph 6. Let

A=(A,,,Ag) and X=(X,, Xy .

The result (6) remains valid when A and X therein are replaced with the vectors A
and X .
Since the model is recursive, so 1s the structure of A. Hence, we may further

assume that as for the latent variables which are not root nodes in 6 we can
determine subjective conditional probabilities for each of the non-root latent variables.
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Arbitrary values in (0,1) may now be assigned for the root latent variables.
Suppose that there are L (L<K) root variables and for convenience’ sake, let the

first L latent variables are root nodes. Once a set of subjective conditional
probabilities are assigned to all the non-root nodes in ¢, we can obtain the
conditional  probabilities of the random vector X given values of

A;,,=(A,,--,A ). Then by applying a vector version of Theorem 1 with A and
X therein replaced with Ay and X, respectively, we can find a set of joint

probabilities of Am, #( A ;,;=i) ;e 1. as appearing in (6). Therefore, for any

recursive model of categorical variables, we can obtain initial values, {#(z) @} ;o I

that satisfy (1), ie., that are calibrated to data.

Although not directly related to the issue addressed in this section, the following
quote from Spiegelhalter et al. (1993) is worth noting at this point because it looks
as if they share a common concern with us:

“However, they (ie, Spiegelhalter and Cowell (1992)) also show that
withsystematic missing data on intermediate nodes such as in the CHILD
network, the estimation procedure may be inconsistent and strongly reliant on
the prior distribution. Therefore considerable care is required when specifying
priors for nodes that are not observed, and it may be preferable to marginalise

over nodes that are not to be observed and learn on this collapsed graph.” (p.
243)

5. Simulation Results Using Calibrated Initial Values

In this section we will show, using simulated data, how the calibrated initial values
in which there is no OD work for EM, and then, in the subsequent section, we will
compare the result with that by randomly selected initial values. The model to use
consists of 6 latent variables and 7 observables. All the variables are assumed to be
binary in the model, and the latents are denoted by A’s (think of ‘abilities’) and the
observables by X's (think of ‘item scores’). The model structure is given in Figure
1, where the circles represent latent variables and the boxes observables.
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Figure 1: A DAG of 6 latent variables (circle nodes) and 7 observables (in boxes)

/

The model structure in the figure is an artifact from educatinal testing. Suppose
that a circle represents a variable which indicates the states of a certain ability (or
knowledge) and a box represents an item score variable. The directed edge between a
pair of circles represents that the state of the ability at the head of the edge is
influenced by the state of the ahility at the tail of the edge. The directed edge from
a circle node to a box node represents that the item score of the item at the box is
influenced by the state of the ability corresponding to the circle.

The 6 ahility nodes may be interpreted as being labelled according to some
hierarchy among themselves. For instance, abilities 2 and 3 are prerequisite to ability
4, As for the relationship between ability and item score, some item nodes have
multiple parent nodes while some others have single parents. We may interpret the
relationship as that test takers mayv need as many abilities as the number of the
parent nodes of a certain item score node to solve the corresponding item. But this
does not necessarily imply that the probability of giving a correct answer to a certain
item when all the parent-node abilities are not in good states is zero. It could be a
lucky guessing, appropriate reasoning, or test wisdom that makes the probability
positive,

In the simulation study, we consider binary variables only, each taking on 0 or 1.
A data set was generated from a model as given in Table 1 in Appendix. We took
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the data size large enough (1,000,000) in comparison with the total number of the

cells (28¥=8,192) of the contingency table for the graph in Figure 1 so that, firstly,
the actual probabilities may be as close as to the values I assigned and, secondly, we
may avoid as much as possible chancy fluctuations in the estimates due to a small
size of data.

Wu(1983) noted earlier that estimates from an EM are often subject to the initial
values. When models are relatively simple such that each node has at most one
parent node, randomly selected initial values for an EM may work well for
recursive models. However, as the model structure becomes complicated, with more
nodes involved and with more nodes having multiple parent nodes, randomly selected
initial values may end up with inappropriate-looking or order-distorted (see section 3)
estimates. We will see empirically in this section that if we used calibrated initial
values, we might expect that the final estimates from an EM look more appropriate
than those whose initial values are not calibrated.

For notational convenience, we will denote the circle node labelled 2 by A, and

the box node labelled 7/ by X, When we used model structures that are simpler

than that in Figure 1 where each node has at most two parent nodes, the initial
values did not matter much, that is, whether the initials were calibrated or not we
had estimates that were close to the actual probabilities. So we added more arrows to

get the graph in Figure 1 where nodes Ag, X4, X4, and X; have 3 or 4 parent

nodes. & or 16 conditional probabilities are to be estimated for each of these nodes,
and the possibility of OD becomes relatively higher.

We tried three different sets of calibrated initials as in Table 1. As displayed in the
table, the initials in set 1 are relatively smaller than the actual probabilities, those in
set 3 relatively larger than the actual probabilities, and those in set 2 are the same
as those in set 3 except for the probilities where the conditional variables are all
equal to 1.

The estimates are in the last three columns of Table 1. Out of the three calibrated

initials, sets 2 and 3 are preferable. Only one very minor OD is found at node X
for set 3 and two very minor ODs are found at the same node for set 2, while 5
ODs are found at nodes Ag, X4, and X4 for set 1. The goodness-of-fit levels

were more or less the same for the three sets with the P-value 0.09 (the Pearson or
LR statistic values were about the same around 82 with 66 degrees of freedom.)
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6. A Comparison of Global Discrepancy of Estimates
between the Set of Calibrated Initials and the Set of
Randomly Selected Imitials

The only difference in the simulation set-up between the preceeding and the current
sections is that the initial values are calibrated in the former while they arc not in
the latter. We use the same model structure and the same true probabilities as in the
preceeding section.

An advantage of a simulation study is that we know the true model. Making use
of this advantage, we will compute the discrepancy between the set of the cell

estimates ( W/’E;) and the set of the true cell frequencies ( #;), where the discrepancy

is represented in three different formulae:
For the index set V of the 13 variables in the model structure as in Figure 1,

N D

D1 _ z} (nz'lmi)
1€y m ;

N2

(n;— m;)

Dy, = Z}
ey 7

Dy = (Z;v(nf— ﬁ\zi)z)/log.

Di,D, and D; are Pearson Chi-square statistic, Neyman Chi-square statistic, and a

sum of squared-errors, respectively. The D; and D, may not have Chi-square

distributions since the estimates underwent a numerical restriction by the E-step of
the EM algorithm. However, we don’t have to worry about their distributions, since
our aim is to compare the performances of calibrated and randomly selected initials

on the same scale. The 10° in the denominator of D5 keeps the value of D5 within
some range;, otherwise, its value becomes enormously large.

I generated 65 sets of randomly selected initial values and obtained the [ values.
When compared with the D values from the 3 sets of calibrated initials as used in
the preceeding section, the D values from these 65 sets were apparently larger than

those from the calibrated initials as displayed in Figure 2. Since the D)y and D,
values range over a multiple of 10° to a multiple of 10 8 and D5 over a multiple of

100 to a multiple of 10°, they are transformed as follows so that they may shrink
mto a much smaller range:
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Figure 2: Box plots of the three L values as in (7). The whiskers are 1.5 times the
inter-quartile range apart from each other.

L; = log(D;/10%), for i=1,2. @
Ly = logDs.

In the figure, the three bars at the bottom of the box plots are respectively the
discrepancy ( L) values of the estimates from the three sets of the calibrated initial
values. The whiskers in the box plot are one and half times the inter—quartile range
apart from each other. Although only 3 sets of calibrated initials were used in the
simulation study, the effect of initial value calibration is believed to have been shown
clearly.

Overall, the estimates from randomly selected initials were not reliable and, in
particular, when there were OD phenomena in the initials, we could often see serious
OD phenomena in the estimates. I will refrain from including a table of such
estimates, since the table may not make any sense other than Figure 2 does.
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7. Bayes Estimation

As the model becomes larger and more complicated, it becomes more likely that the
OD takes place even when there is no OD in the initials and the initials are
calibrated. When there is a minor OD in the estimates from calibrated initials with no
OD, a reasonable treatment for that then is a Bayes estimation with an appropriate
prior for the order-distorted node.

Spiegelhalter and Lauritzen (1990) introduce the notions of global independence and
local independence on the prior. The former is the assumption that the prior for the
whole model is given as a product of the priors on the parameters of the individual
nodes of the model, and the latter being the assumption that the priors on a node are
independent each other among all the possible states or values of the parents of the
node. These notions are instrumental in Bayesian statistical reasoning and their
application appears in Spiegelhalter et al. (1993) and Thiesson (1996) among others.

Priors are usually given in the form of a distribution, but we may allow them in
the form of point estimates along with ranges to reflect an imprecision of each of the
estimates. Some examples of the point estimates are found in Spiegelhalter et al
(1993) and Thiesson (1996). In this paper, all the (conditional) probabilities are
multinomial, and so Dirichlet priors are used at a node. When priors are given In
terms of point values along with ranges of imprecision, we can then convert them
into Dirichlet distributions under a certain condition that the range of imprecision
represents a one standard error interval (see Spiegelhalter et al. (1991).) This
simplified prior was used in fixing the minor OD in the estimates whose initial values
are set 3 in Table 1.

Table 2 in Appendix shows the result of a Bayes estimation using the simplified
prior. In the table, the initial values in sets 3 and 4 are the same except that a
couple of priors are imposed on conditional probabilities,
P(Ag=1(A; A;,A5)=(0,0,0)) and P(X¢=1(A43 A, A5 Ag)=(1,0,0,0)).
There is a minor OD in the estimates from set 3 at node X4 The estimates for the

conditional probability with the configurations of the conditional variables, (0,0,0,0) and
(1,0,0,0), were 0.086 and 0.064, respectively. While there was only one OD in the
estimates for set 3, we need to assign prior on two conditional probabilities because
of a chain reaction phenomenon. When a prior was imposed on a conditional

probability of X, the imposition affected the estimation for the conditional
probability of Ag.
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When an OD takes place, it is on us which parameter to impose prior on. In this
simulation study, I imposed Beta priors in the simplified form as in the fifth column
of Table 2. In the column, » and sd in " p(sd)” mean the ean and the standard
deviation of the imposed Beta prior, the values are selected in the same spirit as
Spiegelhalter et al. (1991). For notational convenience, we will write a(1,0,0) for

P(Ag=1(A4, A4, A5)=(1,0,0)). When a prior was imposed on X, another OD

took place in the conditional probability of A gbetween «(0,0,0) and a(1,0,0).
Their estimates were 0111 and 0.091, respectively. For this pair, I determined to
assign a prior upon «(0,0,0).

As shown in the last column of Table 2, the quality of the estimates are more or
less the same between sets 3 and 4 except that there is now no OD in the estimates
from set 4.

In Table 2, the Beta priors for Ag and X are assigned with a view to remove
the OD phenomena in the estimates set set 3. As mentioned above, the OD took
place between «(0,0,0) and @(1,0,0). I decided to impose a prior upon a(0,0,0)
because the true value is equal to 0.05. But in practice, we do not know the true
value, and so where to impose a prior is a matter of personal experience and
trouble-shooting. If the true value were not known, one may impose a prior upon
@(1,0,0) arguing that the estimates for @(0,0,1) and «(0,1,0) are 0.23 and (.19,
respectively and so that the true value of «(1,0,0) should be around these values.
Of course, if we regard this viewpoint as acceptable, we may give it a try.

Back to the table, once we decided to impose upon @(0,0,0), we need to specify a
Beta distribution. According to Spiegelhalter et al. (1993) and Thiesson (1996), we
may select the values for the center and the length of the interval that we want the
corresponding estimate be found in. In the table, I selected 0.06 and 0.03 respectively
as the values for the center and half of the length of the desired interval in the hope
that the corresponding estimate is located near 0.06 and not larger than 0.09 which is
actually the estimate of a(1,0,0). We may do a similar thing as above for Xg.

It is desirable that the issue of which probability of an OD pair to put a prior on
is dealt with based on the current estimates, the nature of the relation between the
corresponding node and the set of its parent nodes, and experts’ opinion on the OD
among others.
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8. Further Discussion and Concluding Remarks

The notion of calibration were often used in evaluating probability predictors which
later was developed into comparing them by incorporating the concept of refinement
(see Fienberg and Kim (1998) for an overview). We say that a probability predictor
for a certain event is calibrated if, for each value p of the probabilities that the
predictor uses for prediction, the relative frequency of the event out of the total
number of the cases that the prediction value is p is equal to p. So this is an issue
of linking a subjective probability to a relative frequency. This perspective per se
carries over into calibrating initial values. Initial values for an EM, when applied to a
complicated model structure, had better be selected in such a manner that the model
structure and the data are well incorporated and experts’ opinions, if any, are
consistently reflected therein. This point is formulated substantially in section 4.

Another thing to note in regard to imtial values for a model of abilities and test
performance is the OD phenomenon. In reality, we do not know the true values of
the parameters. So an OD in the estimates is a warning signal about the quality of
the estimates. When OD is found at several variables, it is desirable that a new set
of initial values is obtained provided the model structure is well chosen. But when
there are one or two ODs, a Bayes estimation is recommendable. Since the
distribution for our model is multinomial, we may use Dirichlet priors either in a
distribution form or in a simplified form with an imprecision interval. We used priors
given in the latter form in this paper. When an OD is being fixed at a node, another
OD may occur at a neighboring node as a result of chain reaction in estimation,
which was pointed out in the preceeding section.

EM is one of the most popular statistical estimation methods for a model that
contains latent variables. It is easy to understand and use. Because of these merits,
EM 1is expected to maintain its popularity notwithstanding its relatively slow
convergence rate (see Van Dyk and Meng (1997) for the issue of convergence rate).
When we deal with a causal model of categorical variables involving 10 or less
variables, we may have no problem in applying an EM algorithm to obtain
appropriate estimates even with randomly selected initial variables. But as the number
of variables increases and the model structure becomes more complicated, randomly
selected initial values may often end up with inappropriate estimates. But if we select
initial values carefully so that they may be calibrated and the model structure and
experts’ opinions may be well incorporated in them, then we may have much more
appropriate estimates that are far closer to the true values than the estimates from
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randomly selected initials, as is illustrated in this paper..

In assigning values for the conditional probabilities ¢(xpa(X)=17) to obtain initial
values, one may not worry about consulting experts. When experts are not available,
we may assign values in such a way that the OD phenomenon may not occur and
the initials may be calibrated. Of course, if experts’ opinions were at hand, I would
suggest they be respected provided the OD phenomenon does not occur.

References

(1] Dawid, A. P. (1979). Conditional independence in statistical theory. Journal of
Royal Statistical Society B, 41, 1, 1-31.

[2] Fienberg, S. E. and Kim, S.-H. (1998). Calibration and refinement fpr classification
trees. Journal of Statistical Planning and Inference, 70, 241-254.

[3] Jeong, M. S., Kim, S.-H., and Jeong, K. M. (1998). Initial value selection in
applying an EM algorithm for recursive models of categorical variables.
Journal of the Korean Statistical Society, 21, 1, 25-55.

[4] Kyberg, Jr., H. E. and Smokler, H. E. (1980). Studies in Subjective Probability
(edited), Huntington, New York: Robert E. Krieger Publishing Company.

[5] Pearl, J. (1988). Probabilistic Reasoming in Intelligence Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann Publishers, Inc.

(6] Savage, L. J. (1972). The Foundations of Statistics, Second Revised Edition, New
York: Dover Publications, Inc.

[7] Spiegelhalter, D. J. and Cowell, R. G. (1992). Learning 'in probabilistic expert
systems. In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid
and A. F. M. Smith, eds.) 447-466. Clarendon Press, Oxford.

[8] Spiegelhalter, D. J., Dawid, A. P., Lauritzen, S. L., and Cowell, R. G. (1993).
Bayesian analysis in expert systems (with discussion). Statistical Science, 8,
3, 219-283.



An Improvement on Estimation for Causal Models of Categorical Variables 81

(9] Spiegelhalter, D. J., Harris, N. L., Bull, K., and Franklin, R. C. G. (1991). Empirical
evaluation of prior beliefs about frequencies: methodology and a case study
in congenital heart. disease. Technical Report 91-4. MRC Biostatistics Unit,
Cambridge.

[10] Spiegelhalter, D. J. and Lauritzen, S. L. (1990). Sequential updating of conditional
probabilities on directed graphical structures. Networks, 20, 579-605.

[11] Thiesson, B. (1996) Score and information for recursive exponential models with
incomplete data. Technical report R-96-2024. Department of Mathematics
and Computer Science, Aalborg University, Denmark.

[12] Van Dyk, D. and Meng, X. L. (1997). On the ordering and groupings of
conditional maximizations within ECM-type algorithms. Journal of
Computational and Graphical Statistics, 6, 2, 202-223.

[13] Whittaker, J. (1990). Graphical models in applied multivariate statistics, New
York, NY: Wiley

[14] Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. The
Annals of Statistics, 11, 1, 95-103.



82 Sung-Ho Kim

Appendix

Table 1: True probabilities and three sets of calibrated initials for the model structure in Figure 1. The
second column lists the configurations of the conditional variables for the corresponding conditional
probability. The third column lists the actual probabilities assigned to the nodes. The initial values for
the node probabilities are all calibrated. The P-values of the goodness-of-fit statistics (both Pearson and

likelihood-ratio) are about 0.09.

list of prob’s config’s

prob. values

true initial values estimates
set 1 set 2 set 3 set 1 set 2 set 3
P4 =1) 0740 0904 0868 0755 0.74 0.74 0.74
P(A = 14D 0 0.130 0.10 0.10 0.15 0.15 0.15 0.15
1 0.750 0.70 0.70 085 0.76 0.76 0.76
P(A3=14) 0 0.221 0.10 0.10 0.15 0.22 0.22 0.22
1 0.830 0.70 0.70 0.85 0.83 0.83 0.83
P(A;=1|A4, As) 00 0.220 0.10 0.10 0.10 0.16 0.13 0.16
01 0.220 0.15 0.30 0.30 0.29 0.25 0.27
10 0.220 0.15 0.30 0.30 0.19 0.16 0.19
11 0.840 0.60 0.65 0.85 0.36 0.85 0.85
P(As=1As 0 0.151 0.10 0.15 0.15 015 0.12 0.14
1 0.850 0.60 0.65 0.85 0.84 0.78 0.83
P(As=1|A4s A4, As) 000 0.050 0.05 0.10 0.10 0.07 0.10 0.11
001 0.100 0.10 0.20 0.20 0.14 0.20 0.23
010 0.100 0.10 0.20 0.20 0.15 0.14 0.19
011 0.197 0.15 0.40 0.40 0.41 0.41 0.47
100 0.102 0.10 0.20 0.20 0.04 0.20 0.11
101 0.199 0.15 0.40 0.40 0.16 0.35 0.35
110 0.200 0.15 0.40 0.40 0.14 0.42 0.36
111 0.749 0.65 0.65 0.90 0.89 0.79 0.91
P(X,=1AD 0 0.141 0.10 0.20 0.20 0.14 0.14 0.14
1 0.810 065 0.65 0.85 0.81 0.81 0.81
P(Xz=1A) 0 0.350 0.10 0.20 0.20 0.34 0.34 034
1 0.950 0.65 0.70 0.90 0.95 0.95 0.95
P(X3;=1l4) 0 0.100 0.10 0.20 0.20 0.10 0.10 0.10
1 0.730 0.65 0.75 0.35 0.73 0.73 0.73

(to be continued)
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list of prob’'s config's prob. values
true initial values estimates
set 1 set 2 set 3 set 1 set 2 set 3
P =114, A3, Ay 000 0.100 0.05 0.10 0.10 0.10 0.10 0.10
001 0.148 0.10 0.20 0.20 0.16 0.16 0.16
010 0.149 0.10 0.20 020 0.15 0.15 0.15
011 0.203 0.15 0.40 0.40 0.17 0.18 0.17
100 0.150 0.10 0.20 0.20 0.13 0.13 0.13
101 0.200 0.15 0.40 0.40 0.30 0.32 0.31
110 0.200 0.15 0.40 0.40 0.14 0.18 0.18
11 0.830 0.70 0.70 0.90 0.82 0.82 0.82
P(X5=1|As, As) 00 0.100 0.10 0.20 0.20 0.09 0.09 0.09
01 0.150 0.20 040 0.40 0.21 0.24 0.22
10 0.162 0.20 0.40 0.40 0.22 023 0.20
11 0.680 0.60 0.70 0.90 067 0.71 0.68
P(Xs=1|As A4, As, Ag) 0000 0.100 0.05 0.10 0.10 0.09 0.09 0.09
0001 0.100 0.10 0.20 0.20 0.21 0.17 0.17
0010 0.100 0.10 0.20 0.20 0.11 0.11 0.10
0011 0.203 0.15 0.30 0.30 0.19 0.16 0.19
0100 0.100 0.10 020 0.20 0.11 0.13 0.11
0101 0.200 0.15 0.30 0.30 0.28 0.34 0.29
0110 0.200 0.15 0.30 0.30 0.20 0.23 0.17
0111 0.605 0.20 0.40 0.40 0.50 043 043
1000 0.100 0.10 0.20 0.20 0.07 0.07 0.06
1001 0.199 0.15 0.30 0.30 0.51 0.42 0.38
1010 0.200 0.15 0.30 030 0.21 0.15 017
1011 0.596 0.20 0.40 0.40 0.37 0.47 0.38
1100 0.196 0.15 0.30 0.30 0.13 0.14 0.12
1101 0.601 0.20 0.40 0.40 052 0.71 0.58
1110 0.600 0.20 0.40 0.40 0.52 0.62 0.45
1111 0.821 0.70 0.70 090 0.80 0.82 0.80
PG =1lAy A5, A9 000 0100 005 010 0.10 0.1 0.11 0.11
001 0.150 0.10 020 0.20 0.29 0.30 0.23
010 0.150 0.10 0.20 0.20 0.17 0.13 0.14
011 0.700 0.15 0.40 0.40 0.31 043 0.34
100 0.150 0.10 0.20 0.20 0.16 0.14 0.12
101 0.700 0.15 0.40 0.40 042 0.72 052
110 0.702 0.15 0.40 0.40 0.70 0.83 0.72

111 0.929 0.70 0.70 090 0.90 050 0.90
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Table 2 True probabilities and two sets of calibrated initials for the model structure in Figure 1. The second

column lists the configurations of the conditional variables for the corresponding conditional probability. The third
column lists the actnal probabilities assigned to the nodes. The initial values in set 4 are the same as set 3 except

that priors are imposed on two nodes, A ¢ and X g The P-values of the goodness-of-fit statistics (both Pearson

and likelihood-ratio) are about 0.09.

list of prob’s config's prob. values
true initial values estimates

set 3 set 4 set 3 set 4
PA=1) 0.740 0.755 0.74 0.74
PA =1A4) 0 0.130 0.15 0.15 0.15
1 0.750 0.85 0.76 0.76
P(A;=1A) 0 0.221 0.15 0.22 0.22
1 0.830 0.85 0.83 0.83
P(A=1142 Ay 00 0.220 0.10 0.16 0.17
01 0.220 0.30 0.27 0.28
10 0.220 0.30 0.19 0.19
11 0.840 0.85 0.85 0.85
P(As=1|A3) 0 0.151 0.15 0.14 0.14
1 0.850 0.85 0.83 0.83

P(As=1]A43 44, A5) 000 0.050 010  0.06(0.03) 0.11 0.06

001 0.100 0.20 0.23 0.24

010 0.100 0.20 0.19 0.20

011 0.197 0.40 047 0.48

100 0.102 0.20 0.11 0.06

101 0.199 0.40 0.35 0.35

110 0.200 0.40 0.36 0.37

111 0.749 0.90 0.91 0.91

P =1A) 0 0.141 0.20 0.14 0.14
1 0.810 0.85 081 0.81

PG =14 0 0.350 0.20 0.34 0.34
1 0.950 0.90 0.95 0.95

P = 1143 0 0.100 0.20 0.10 0.10
1 0.730 0.85 0.73 0.73

(to be continued)



An Improvement on Estimation for Causal Models of Categorical Variables 85

list of prob's config’s prob., values
true initial values estimates
set 3 set 4 set 3 set 4
P(X;=1]A, A3, A) 000 0100 010 0.10 0.10
001 0.148 0.20 0.16 0.15
010 0.149 0.20 0.15 0.15
011 0.203 0.40 0.17 0.17
100 0.150 0.20 0.13 0.13
101 0.200 0.40 0.31 0.30
110 0.200 040 0.18 0.18
11 0.830 0.90 0.82 0.82
P(X5=1|A3 As) 00 0.100 0.20 0.09 0.09
01 0.150 0.40 0.22 021
10 0.152 0.40 0.20 0.20
11 0.680 0.90 0.68 0.68
P(X5=1|A4s A4, A5, As) 0000 0.100 0.10 0.09 0.09
0001 0.100 0.20 0.17 0.15
0010 0.100 0.20 0.10 0.11
0011 0.203 0.30 0.19 0.18
0100 0.100 0.20 011 0.11
0101 0.200 0.30 0.29 0.32
0110 0.200 0.30 0.17 0.17
0111 0.605 0.40 0.43 0.40
1000 0.100 0.20  0.095(0.007) 0.06 0.09
1001 0.199 0.30 0.38 0.19
1010 0.200 0.30 0.17 0.17
1011 0.59 0.40 0.38 033
1100 0.196 0.30 0.12 0.12
1101 0.601 0.40 058 0.60
1110 0.600 0.40 0.45 0.45
1111 0.821 0.90 0.80 0.80
P(X7=1/A4 A5, A) 000 0100 010 0.11 0.11
001 0.150 0.20 0.23 0.22
010 0.150 0.20 014 0.14
011 0.700 0.40 0.34 0.33
100 0.150 0.20 0.12 0.12
101 0.700 0.40 0.52 0.55
110 0.702 0.40 0.72 0.72
111 0.929 0.90 0.90 0.90

"In p(sd), p and sd are the mean and the standard deviation of a Beta prior, respectively.



