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Edgeworth Expansion and Bootstrap Approximation
for Survival Function Under Koziol-Green Model
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Abstract

Confidence intervals for survival function give useful information about the lifetime
distribution. In this paper, we develop Edgeworth expansions as approximation to the
true and bootstrap distributions of normalized nonparametric maximum likelihood
estimator of survival function in the Koziol-Green model and then use these results
to show that the bootstrap approximations have second order accuracy.

1. Introduction

Lifetime data with incomplete observations often arise in medical research and reliability
analysis. In some clinical trials, each subject is observed from some entry time until a
particular event happens. Often it is impossible to observe complete lifetime of the subject.
With this type of right censored data, Inferences for survival function of the lifetime
distribution is important. In particular, confidence intervals for survival function give an useful
information about the lifetime distribution. Typically such intervals are obtained by using first
order normal approximation of an estimator of survival function. But, In many instances, the
applications in which these approximations are used have small sample sizes, hence the
appropriateness of such intervals is suspected. A primary goal of this paper is derived better
confidence limits for survival function than those constructed based on the normal
approximations via Edgeworth expansion.

The bootstrap method is an alternative to normal approximation. The bootstrap procedure to
the random censorship model was first discussed by Efron(1981). Subsequently, many
researchers have been made a study of the bootstrap approximation. On the other hand, the
higher order asymptotics have been devised to increase the accuracy of the approximation of
the exact distribution of statistics. A well known method is to use the first few terms of an
Edgeworth expansion. Recently, some important progresses have been accomplished in the
way of producing accurate approximations to the distribution of censored data. Lai and
Wang(1993) provided general Edgeworth expansions for the true and bootstrap distributions of
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an asymptotic U-statistic. Chen and Lo(1996) obtained one-term Edgeworth expansions for the
distributions of the studentized Nelson-Aalen(NA) and Kaplan-Meier(KM) estimators and their
bootstrap versions. Gross and Lai(1996), using the results of Lai and Wang(1993), derived the
Edgeworth expansion of asymptotic U-statistic representation for the studentized KM
estimator and its bootstrap distributions with left-truncated and right-censored data.

In this paper, we develop Edgeworth expansions as approximations to the true and bootstrap
distributions of normalized nonparametric maximum likelihood estimator(ACL estimator) of
survival function in the Koziol-Green model which is proposed by Abdushukurov(1984) and
Cheng and Lin(1984, 1987) and then use these results to show that the bootstrap
approximations have second order accuracy.

2. Preliminary and Assumptions

Let 7,,75,--, T, be independent and identically distributed(iid.) random variables with a
continuous distribution function F. These are censored on the right by the iid random
variables Cy, Cy,++, C, with a continuous distribution function G, so that the observations
available consist of the pairs X,=(Z;,,6;) for i=1,-,n, where Z;= T:AC; and
0;= I(r.<c). Here and in the sequel, a/\b= min(a, ») and I 4y denotes the indicator
function of the event A.

In the usual random censorship model one assumes that the lifetimes and censoring
sequences are independent. Thus the observed sequence {Z,, i=1,-,n} is iid random
variable having distribution function H(#)=1—S(¢)=1— F(t) G(¢), where F(¢)=1— F(¢)
and G(t)=1—G(¢).

Koziol and Green(1976) introduced the appealing and useful special model in which there
exists a positive constant A, the censoring parameter, such that

G(t)y= F'(t), 0<<oo, 2.1
It is often referred to as the Koziol-Green(KG) model of random censorship.

Under the this model, it is easy to show that if F is continuous, then

= jomp{ciztl T;= t}dF(t)

- fom?;(t)dF(t)
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and ?(L‘ y=1[S()] ® Hence 8 is the expected proportion of uncensored observation. The
case A=0 (8 =1) comresponds to no censoring and the expected number of the censared
observations increases as A Increases.

In most studies of the KG model, the KM estimator of survival function plays the key role
in estimation and hypothesis testing., An obvious question is whether the information through
the censoring parameter A is fully acknowledged by using KM estimator. Then
Abdushukurov(1984) and Cheng and Lin(1984, 1987) independently proposed the ACL estimator
of survival function as follows :

Fo(t)=[S,()1%, for each ¢,
where

Sn(lf) = % ZII{Z’”} and 9,23 i‘ 61'.

n =
The ACL estimator is preferred to KM estimator of survival function whenever (2.1) holds,
since the asymptotic variance of ACIL estimator is strictly smaller than that of the
corresponding functional based on the KM estimator. Moreover, they showed that the

sequence of random functions {A,(¢) =V n( F,(¢t)— F(t))}, for any bounded interval of

the form [0, T], converges weakly to the mean zero Gaussian process W(#) with covariance
function, for 0<s<{< T,

Cov(W(s), W(t)) = 6S(s)1? 1 [S(t)1%[1—5(s)]
+8(1— SISO [ InS(s)NInS()] .

(2.2)

On the bootstrap approximation in KG model, Dikta and Ghorai(1990) resampled the
bootstrap samples, X;'=( Z;*, 8;*), i=1,+, n, using the independence of Z and &. The
bootstrap analog to F,(t) is

F, () =18 (1",

where

S (=L 315, ad 67 =L 36

=1 i

Dikta and Ghorai(1990) considered the process
{AS()=Vn( F, (1) — F()), 04t T}
and showed that the process A, (#) converges weakly to the Gaussian process WA(f) with

covariance given by (2.2).
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3. Edgeworth Expansion and Bootstrap Approximation

Lai and Wang(1993) devised an Edgeworth expansion for normalized NA estimator after
proving that the statistic has an asymptotic U-statistic representation, Using these results we,
firstly, show that the normalized ACL estimator has an asymptotic U-statistic,

Theorem 3.1 Let F,(t)=1[S,(#)] % be an estimator of the survival function F(t) in
Koziol-Green model. Then U,(t)=Vn( F,(t)— F(t)) has an asymptotic U-statistic

representation as follow :

_ a(X;) a (X)) B(Xin;')
Unt) = g{ L7 T }+ Hen g A
?’(Xinj!Xk)
1gi§k_<.n 0 + Ry,

where X;=(Z;, 8;) and a, @', 8, v are nonrandom Borel function which are invariant under

permutation of the arguments and which satisfy assumptions (A1)-(A4) of Lai and
Wang(1993).

Proof. Taking a three-term Taylor expansion of F,(#) = [ S,(£)1% about S,() = S(¢)
and €,= 4, and let

b = 6[S(H)],

by = [S(HI°WS(p),

by = H(6—-1)[S(£)1%72,

by = 2[S(N 71+ 6mS(H],

ps = [S()]1°[InS(D]?,

by = 6(6—1)(6—2)[S(£)]1°73,

pr = 3[S()1° 72 {20+ 8*InS(£) - 6InS(£) — 1},

pg = 3[S(HOTH{2mS(#) + 6l nS(1)1%),

by = [S(1°[InS(HI3.

Then we may write



Edgeworth Expansion and Bootstrap Approximation for Survival Function Under Koziol-Green Model =~ 237

[S,()]17=[S()1° = pLS,(D— SO+ 1l 0,— 6]
+ 35 {220 Sa (D = SOOI+ 14 S, () — SO 6, ~ 61+ 5L, — 1)

+ 3 {56 S,(D = ST+ 5118, () = SOI[ 6, ]
+ 1l S, (D — S(HI[8,— 61+ 1 0,— 61°} + R,.
Let w,(t)=1zyny— S(t) and v;= I 5=y — 6, then
_ o(X;) a'(X;) X, X;) HX;, X, Xy)
Unt) = Z\[ n + n? ]+ls;;sn n +1sz§ksn n97? RS

where

a(X;) = polt)+ by,
@ (X;) = % {93 (1—28(2)) + psS(H(1— S() + ps6(1 — ] ()

+2bg0 )i+ [15(1—268) + p:S((1 = S()) + py0(1 = D)pylvi(1)},
B(Xi, X)) =psw;(£)w;(¢)+ pslw; (£)vi+ 0 t) vil+ bsviv;,
and
(X, X5, X)) = pewi (o t)wl(t)+ byt bl o) w(t)v,+ w{t)w(t)y;
+ () )v ]+ pel vavwp(t) + vaw(t) + vivw (1) ].
An application of the exponential inequality and exponential bounds for empirical process can
be used to show that P{|R,|=#n 1"} =o(n""') for 0<e<1/2. d

We next derive an Edgeworth expansion for normalized ACL estimator. Since U,(t) has

an asymptotic U-statistic, we show that a(X ;) satisfles Cramér’'s condition and second-
degree U-statistic component satisfies Condition (C) in Lai and Wang(1993).

From the definition of a(X;), it follows that Cramér's condition holds if F has non-
vanishing absolutely continuous component with respect to Lebesque measure. To show that
Condition (C) holds, let f,(X;)=[S(t)1*{wt)+v;} and X;= (Z;, 8). Then

Wy =E{5(X1yX2)fk(X2)|X1}

= 6(6—DIS(OI* 71 [2—S(t) + 0l S($)]wy (¢) (3.2)
SOOI {1~ S+ 6InS(H))+ (60— 1)InS(H} v, .

Hence, for any K=1 and constants ay, -, dx 21 a,W,=0 a.s. implies that
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3 @l S(O1HB(8=DIS(H] 7~ 2 S(8) + OS] (1))

3)
== 3 alSOIHISOI LA~ S+ 0 S(E) + 80— DI S(OI)  a..
Taking variance on both sides of (3.3), then
2 (@l SOTMAHB0- DIS()] ™ [2= S+ 01 SO S((1 - S(1) |
- (34

=— gl {a: [ SISO L1 — S+ 0 S(H)) + 66— 1 In S(H)1}20(1— 8).

Since S(#) is continuous, this implies that a; = = ag=0. Note that A(X;,X,) is
bounded random variable. Hence Condition (C) holds, and the linear operator L defined by

(L) (y) = E{B(», Y,)/(Y;)} has infinitely many nonzero eigenvalues.

From Theorem 3.1 and above results, we develop the Edgeworth expansion of the
normalized ACL estimator.

Theorem 3.2 Let the U,(#) be an asymptotic U-statistic defined by (3.1) and
o(t)=[E{ *(X)}1"% Define a3= E{( *(X)}, ay=E{ " (X))}, & = E{la(X)d'(X)},
b= E{a(X)a(X,)X X, X5)}, x3=a3+3b c= E{a(X)a(X,;)a( X)X Xy, X, X3)},
and x,= a;— 30" +4dc+ 12E{ o (X1)a( X)) (X1, Xo) + a( X a( X, )Xy, X3)B(X,, X3)}).
In addition, let

X3
6o°

Pz)= (2-1),

and

[, EB(Y,,Y) }i Xy . 3 %" 5_ 1.3
Pz(z)_{a + 1 2 + g (2 —32)+ o (2°—102"+15z2) .

Then the expansion

P{ (:c?(z(tl;) Sz} = 0(z)— n VP (2)p(2) — n " 'Py(2)d(2) + o(n D) (3.5)

holds uniformly for —oe { z< oo |

Proof. From the result of Theorem 3.1 and (3.2)-(34), the asymptotic U-statistic
Ult)=Vn( F,(t)— F(t)) satisfies the conditions of Theorem 1 of Lai and Wang (1993),

and consequently P{ U,(#)/o(t) <z} = 0(z)— n Y2P|(2)¢(2) — n 'Py(2)d(2) + o(n 1)
uniformly for z€ R, L]
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-Let @, denote the empirical distribution that puts probability 1/% at each X;= (Z; 8;),
i=1,--,n. The bootstrap sample consists of iid random samples X, , -, X,  with
common distribution &, . The simple bootstrap method estimates the sampling distribution
PVa( Fu()=F@)/ot)<zt by PV a( F, (1)~ F,(0)/ 0,() <21 Xy, X, In

most applications, V #( F,(¢)— F(£))/o(t) can be expressed as an asymptotic U-statistic

which has a limiting standard normal distribution. The same argument can be used to
represent bootstrap statistic as an asymptotic U-statistic. Thus, under the Cramér’s condition
and Condition (C) of Lai and Wang(1993), asymptotic U-statistics and their simple bootstrap

versions have Edgeworth expansions whose difference is of the order O(x ~!), establishing
the second order accuracy of the bootstrap approximation.

Theorem 3.3 Let U, (t) = Vu( F, (¢t)— F,(t)). Suppose that « satisfies Cramér’s
condition. Let @, put weight 1/# on each of the X;=(Z,8;), i=1,,n and let
X", X, be iid random variables with common distribution &, . Then
sup |P{U(t)/ o)<z} — P{L U ()]0, (t)<2|Q,} = On ™Y, (3.6)
where 0,2 (#) is defined by
6,2 (1) = 0,218, (1" T 1= 5,1+ 8,(1— 0[SO [ IS, 37

Proof. Let w?(z‘)zl{m”—sn(z‘) and V) = I —1— 6, , then the same argument as that

Theorem 3.1 show that U, () has the asymptotic U-statistic representation
o X:) | AUXD) BAX:,X})
U, (1) = Z‘{ S R } + lgg-:-gn 372

7 X5, X5, X5) 4R
1si§k£n n5/2 "

with
@, (X7)=piwi(t) + pyvi,
B (X7, X7)=p30] (Do) + pilw; (V] + ] () 1+ piviv;,

where
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b = 6,[S,(H)]1"7H,
2 = [S,()]" S, (1),

P = 0,(6,—1)[S, ()77,

6,~1

ps = 2[5, ()] {1+6,InS,()},

pr = [S. ()17 [InS.(¢)1°.

Since Z; and 7:; be bounded in absolute values by some nonrandom constant C and

sup|S,(¢) — S(8)] = O(n %) = supld, — 8|, the condition of Theorem 2 of Lai and

Wang(1993) are satisfied. Therefore, applying Theorem 2 of Lai and Wang(1993), the proof is
complete. []

4. Numerical Results

To investigate the accuracy of the normal, Edgeworth and bootstrap approximations to the
exact point in a artificial data setting, we carry out the Monte Carlo simulation studies.

We assume that the distributions of lifetimes are exponential. Since the lifetimes are subject
to be censored to the night and the survival function of censoring time is some power of the
survival function of lifetime, we set that the censoring times are also distributed as an
exponential distribution whose parameters are selected to make censoring rate to be 20,40, 60
and 80%. Using the IMSL package, we generate # (20, 30 and 50) lifetimes and censoring
times from distributions F and G, and calculate F,(¢) =[S, (#)] % and 0,(t) for fixed
time point based on the simulated data set.

The exact value, P(z), of P{U,(t)/o(t)<z} is computed by the Monte Carlo method
using 100,000 simulations and the Edgeworth approximation, PE(z), is one-term Edgeworth

correction ®(z)— n "Y2P,(z)¢(z) to the normal approximation @(z), which is accurate to

the order of O(% 1) by Theorem 3.1. The bootstrap approximation, PB (2), is based on a
single random sample of # observations as described by Dikta and Ghorai(1990) and then
20,000 bootstrap samples for the evaluation of P{U,(#)/ 6,(¢) <z} by simulation.

The results of these simulations are given in Table 1 — 4. From the tables, we see that the
accuracies of Edgeworth and bootstrap approximations even outperform the those of normal
approximation. Also, the improvement is particularly apparent when there is non-negligible

discrepancy between the exact value and the normal approximation, eg., at z= £1.96 or

+1.64. and the probabilities of Edgeworth and bootstrap approximations still tend to close the
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exact value despite heavy censoring. The accuracies of Edgeworth expansion are similar to

those of bootstrap approximations in most cases.

Table 1. Values of exact P(z), normal @(z), Edgeworth PE (z) and hbootstrap PB(z)
approximations for exponential model ( F ~ Exp (0.8), ¢t = 0.4, CR = 20%).

n=20 n=30 n=50

z P(z) @(z) PE(z) PB(z) P(z) @(z) PE(z) PB(z) P(z) @&(z) PE(x PB(&)
-1.96 0035 0025 0034 0044 0035 0025 0033 0036 0031 0025 0031 0.032
-1.64 0057 0.051 0.060 0073 0055 0.051 0058 0.063 0.056 0051 0.057 0.068
-145 0084 0074 0.082 0101 0082 0074 0081 0084 0.078 0.074 0079 0.077
-1.28 0115 0100 0.107 0104 0.107 0100 0105 0106 0.103 0100 0.104 0.105
0.00 0.505 0500 0478 0448 0493 0500 0482 0504 0490 0500 0436 0.489
1.28 0915 0900 0906 00917 0911 0900 0905 0907 0906 0.900 0904 0.908
145 0939 0926 093> 0945 0939 0926 0933 0934 0934 0926 0931 0931
1.64 0963 0950 0959 0972 0958 0950 0957 0958 0957 0.950 0956 0.958
196 0934 0975 0984 0996 0983 0975 09583 0983 0981 0975 0981 0.982
Table 2. Values of exact P(z), normal @(z), Edgeworth PE(z) and bootstrap PB(z)

approximations for exponential model ( F' ~ Exp (0.6), ¢ = 0.4, CR = 40%).

n=20 n=30 n=50

z P(z) ©(z) PE(z) PB(z) P(z) @(z) PE(z) PB(z) Plz) ©(z) PE(z) PB(z)
-1.96 0.041 0025 0040 0045 0034 0025 0037 0043 0.035 0025 0.034 0035
-164 0064 0.051 0.066 0.064 0.066 0051 0.063 0065 0059 0.051 0060 0.062
~1.45 0.091 0074 0087 0104 0087 0074 008 009 0079 0.074 0082 0.084
-1.28 0120 0100 0110 0.108 0.117 0100 0108 0.114 0.105 0100 0.107 0.106
000 0460 0500 0465 0492 0479 0500 0471 0466 0433 0500 0478 0.493
1.28 0908 0900 0909 0915 0911 0900 0908 0912 0904 0900 0906 0.906
145 0948 0926 0940 0950 0940 0926 09538 0941 0935 0926 093 0937
164 0968 0950 0965 0979 0965 0950 0962 0970 0962 090 0959 0959
196 0992 0975 0990 0996 0987 0975 0.987 0991 0986 0975 0.984 0.985
Table 3. Values of exact P(z), normal @(z), Edgeworth PE(z) and bootstrap PB(z)

approximations for exponential model ( F* ~ Exp (0.4), ¢ = 0.4, CR = 60%).



242 Kil Ho Cho and Seong Hwa Jeong

n=20 n=30 n=50
z P(z) ©(z) PE(z) PB(z) P(z) @(z) PE(z) PB(z) P(z) @z PE(z) PB(z)
-1.96 0.045 0.025 0046 0.049 0042 0.025 0.042 0.040 0.038 0.025 0.038 0.035
-164 0076 0051 0.073 0067 0070 0051 0.069 0063 0064 0051 0.065 0.064
-145 0.093 0074 0.093 0101 0091 0074 0.090 0093 0.083 0074 0.086 0.083
-1.28 0118 0100 0115 0121 0120 0100 0.112 0,109 0109 0.100 0109 0.105
0.00 0466 0500 0449 0453 0474 0500 0458 0485 0473 0500 0.468 0481
128 0927 0900 0914 0922 0913 0900 0911 0919 0907 0.900 0909 0.908
145 0960 0926 0946 0954 0947 0926 0.943 0949 0943 0926 0939 0939
164 0982 0950 0972 0978 0970 0950 0.968 0973 0968 0950 0964 0.960
196 0997 0975 0996 0997 0993 0975 0.992 0992 0.990 0.975 0988 0.986

Table 4. Values of exact P(z), normal @(z), Edgeworth PE(z) and bootstrap PFB(z)
approximations for exponential model ( F ~ Exp (0.2), + = 0.4, CR = 80%).

n=20 n=30 n=50

z P(z) @(z) PE(z) PB(z) P(z) @(z) PE(z) PB(z) P(z) @(z) RE(z) PB(2)
-196 0060 0025 0054 0.053 0048 0.025 0049 0052 0046 0.025 0044 0.043
-164 0073 0051 0081 0063 008 0051 0076 00714 0076 0051 0070 0.072
-1.45 0096 0.074 0101 0104 008 0.074 009 0.09% 0039 0074 0.091 0.087
-1.28 0122 0.100 0.120 0.111 0.124 0100 0.116 0120 0.113 0.100 0.113 0.119
0.00 0437 0500 0430 0439 0467 0500 0443 0474 0460 0500 0.456 0476
128 0946 0900 0920 0918 0920 0900 0916 0932 0918 0900 0912 0923
145 0975 0926 0954 0959 00959 0.926 0949 0959 0950 0926 0944 0948
1.64 0983 0950 0980 0933 0980 0950 0975 0981 0972 0950 0969 0976
1.96 0.999 0975 0999 0997 0998 0975 0999 0997 0994 0975 0.994 0.995
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