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Estimating the Difference of Two Normal Means

M. Aimahmeed!), M. S. Son?), H. 1. Hamdy3)

Abstract

A three stage sampling procedure designed to estimate the difference between two
normal means is proposed and evaluated within a unified decision-theoretic
framework. Both point and fixed-width confidence interval estimation are combined in
a single decision rule to make full use of the available data. Adjustments to previous
solutions focusing on only one of the latter objectives are indicated. The sensitivity of
the confidence interval for detecting shifts in the true mean difference is also
investigated. Numerical and simulation studies are presented to supplement the
theoretical results.

1. Introduction

The literature devoted to estimating the difference between tow normal means (the well
kriown Behrens - Fisher problem) is immense and there does not appear to be a satisfactory
solution within the classical theory of statistical inference, see for example Bamard (1984) and
Nel and Van de Merwe (1936). There is also some controversy within the Bayesian
framework for comparing two normal means when the variances are completely unspecified, as
reported by Box and Tiao (1973) and Patil (1964). Sequential analytic contributions to the
problem have also been limited, since they were developed based on Stein’s (1945) two stage
group sampling technique or though one-by-one sequential sampling with a switching decision
rule to determine which population to sample next. Our proposed procedure for the Behrens -
Fisher problem is inspired by Hall's (1981) triple sampling scheme. We refer to it as an
inteprated approach since it incorporates point and fixed width confidence interval estimation,
as well as a sensitivity analysis.

Here, we begin with a brief description of Hall's elegant three-stage procedure to construct
a fixed width confidence interval for a single normal mean x when the variance & is
unknown, and we summarize its main asymptotic properties. In addition, we extend his results
to obtain the mean of a continuously differentiable and bounded function of the stopping time.
These results for one population will be applhed in the context of the two-population case in
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subsequent sections. In particular, in Section 2 we discuss some limitations of previous
multistage sampling approaches to the Behrens-Fisher problem. We also motivate our
proposed approach based on more integrated objectives and suggest an adjustment which
combines both point and interval estimation in one decision rule in Section 2.1. In Section 3,
we outline our proposed triple sampling approach. Moreover, in Section 4 we investigate the
sensitivity and the coverage of the fixed width confidence interval for the mean difference,
and in Section b we assess the asymptotic point estimation regret of the estimates used in
the fixed width confidence interval. In Section 6 we supplement our theoretical asymptotic
results with some simulations similar to those performed by Hall(1931).

Assume we have observed a random sample of size 1,4, -, ¢, for »>2 from a normal
population with unknown mean g and unknown variance o¢°. The sample mean
T,=7»'2t; and the sample variance S2= (»— D12t~ T,)? are the UMVUE's for g
and 02, respectively.

Assume further that for two predetermined constants, @d>0 and 0< a<1, we wish to
construct a fixed width confidence interval for g whose width is 2 d and whose coverage
probability is at least 100(1—a@)%. The required interval is assumed to bc of the form

I,,=‘T,id It is not hard to show that the optimal sample size required to establish such an

interval to satisfy the above conditions is #*=a’d’/d?, where a is the 100(1— a/2)%

percentile of N(0,1). Since 7" depends on the unknown nuisance parameter ¢, the fixed
sample size procedure is impractical. Instead, Hall (1981) utilized the idea of group sampling in

three stages to estimate x via estimation of #»".
Specifically, he proposed three consecutive stages to complete the estimation process, namely
the pilot study, the main study, and the fine tuning study. During the pilot study phase an

initial sample of size #;=2 is selected to compute _Tn and § Qro to initiate the process.
Consequently, the second stage sample size is determined according to the decision rule:

R, = max {ry,[ 7a’°d™*S 2141} (1.1)

Where (< y<1 is a design factor which represents the proportion of #* to be estimated by
the second stage information, and [-] is the largest integer function. If sampling is to be

continued in the main study phase, a second random sample of size R;— 7, is selected and
combined with the previously collected 7, observations to update the corresponding sample
measures based on R observations. Entering the fine tuning phase with 7' g and S %l, we
determine the third stage sample size by the decision rule:

R=max {R,[a’d *S 5 1+1} (1.2)

If necessary, a third batch of size R— R is randomly selected and augmented with the
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previously collected K, observations to compute T and the interval Ip= Tp*d for s

We highlight several desirable features of the triple sampling estimation procedure. First, the
sampling scheme 1s designed in such a way that the sample sizes can be closely monitored
and accordingly revised by the next decision rule to reduce the possibility of over sampling.
Second, the idea of group sampling in each stage expedites the process so decisions can be
reached quickly, an obvious advantage when time and money are of concern. Third, by

estimating only a fraction 7 of #" during the second stage, we force the procedure to enter

the fine tuning phase to mend any possible deficiency, particularly when #* is large.
Unlike Stein's (1945) two-stage sampling technique, the triple sampling procedure is more
robust against the possibility that the pilot sample happens to be much smaller than the

optimal sample size had ¢ been known. Clearly, the procedure is designed to combine all the
asymptotic properties of the Anscombe (19533), Chow and Robbins (1965) one-by-one
sequential sampling and the operational savings made possible by applying Stein's method of
group sampling.

Hall’'s (1981) results conceming the asymptotic characteristics of the triple sampling
procedure can be summarized in the following theorem,.

Theorem 1. In the context of the triple sampling procedure (1.1) - (1.2), we have as #;—<©
i) E(R)=7r"+1/2—27y""+0o(1)
Gi) Var(R) =277+ o(d™?)
(i) £ (R—7")% = o(d™*)
(iv) P(pelp) = (1~ a)—ad(a)(a’— y+5)277") 7+ o(d”).

Proof of Theorem 1. I can be found in Hall (1981), Hamdy (1988) and Hamdy et al. (1996),
thus we omit any further details.

In Theorem 2 we extend the results in Theorem 1 to obtain a second order asymptotic

expansion of the expectation of a continuously differentiable and bounded function g of K.

Theorem 2. For R defined by (1.2), let g be a continuously differentiable real valued
function in a neighborhood around #* such that Sup ,.,|g " (n)|= 0(g""'(#%)), then

E(g(R) =g+ 20 Hr—0g () +27g" ()} +old g (#)

Proof of Theorem 2. A Taylor expansion of g(R) around #* yields

gR) = g(+") +(R— g (+) +~§~(R— )2 (P 4 Fp, (1.3)
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where F'p is the remainder term in Taylor's expansion. Taking the expectation throughout
(1.3) and making use of (i) and (ii) of Theorem 1 we obtain
E(g(R)=g(+")+ 20 H(r—) g (+)+27° ¢ (+)} + E(Fp).

It remains to evaluate E(FjR) as follows, E(FR)S—GLEKR— ¥ "(v)| , where v is a

random variable lying between R and #'. Thus,
BFR=§ Sup 12,)g (DE(R— 0l = o(d™ g (")),

where, we have used (iii) of Theorem 1 and the assumption that g’ is bounded.

2. Multistage procedures for the difference between two normal means

Sequential and two stage procedures for the Behrens-Fisher problem have been discussed
by many authors over the years. A brief list of key contributions includes Chapman (1950),
Ghosh (1975, a, b), Ghosh and Mukhopadhyay (1980), Ghurye and Robbins (1954), Hayre
(1983), Louis (1975), O'Neill and Rchatgi (1973) Robbins (1959), Robbins, Simons and Starr
(1967), Scheffe (1943, 1970), and Srivastava (1970), as well as the more recent work of Eisele
(1990)and Hamdy et al. (1996).

Let X;,X,,~ and Y, Y,,- be two independent sequences of independent random

variables having normal distributions with unknown mean g; and unknown variances 0? for

i=1,2. The initial focus will be on estimating the difference 6= (u;— ;) by a fixed width
confidence interval such that the coverage probability is at least the nominal value
100(1 — @)%.

Having observed X, Xy, -, X,, n22 form the first population and Y7, Y5, -, Y,,, m=>2

from the second population, we employ —X’n,_l_’m, ) i S %,, , the usual estimates for
K, ta, O 3, 0 5, tespectively, to construct the interval Iw=(X,— Y n*td) for &

To guarantee 100(1 —a)% coverage probability that the fixed width confidence interval
captures g, the condition P(d=1, ,,)=(1— @) should be satisfied. This requirement implies
that 20(d(oin '+ ¢ gm"l)_”z) —1220(a) —1. Therefore the optimal sample sizes must
satisfy the following inequality

oin '+ oim <d?a? (2.1)

Minimization of the total sample size ( (z+ m) subject to (2.1) to explicitly determine the

optimal sample sizes #* (in terms of 0% and independent of ¢ %) and m"(in terms of J%
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and independent of ¢ %) has remained a troublesome problem. Several “solutions” have been

proposed to define one or more convenient decision rules to achieve the goal of constructing
the required fixed width interval. Here, we present two approaches that may be considered
fundamental in this context.

First, Chapman (1950) and Ghosh (1975, a, b) suggested two stage rules based on the
difference between two independent Student variables. Such procedures ignore the sample
variance of the second stage. In addition, it has been shown that the two stage sampling
scheme, in general, leads to substantial oversampling if the pilot sample size is chosen much
smaller than the optimal sample size, as noted by Ghosh and Mukhopadhyay (1981).

A second approach was proposed by Robbins, Simons and Starr (1967). Where, the

allocation of #"and m" was carmed out by minimizing the total sample size (#"+ m") under
the restriction in (2.1) to obtain

n'=dd i+ a0,), m'=d’d Hoitoy0y), and w'm' =020, " (2.2)

They proposed one-byv-one sequential rules that mimic (2.2) to determine the random
variables N and M. Their procedure consists of (i) a switching scheme that is used to
determine whether to take the next observation on X or Y at each stage (ii) a stopping rule
which determines N and M.

It is clear that the procedure is difficult to apply in real life situations. Also, although the
original populations are independent, the way sampling is performed creates dependence
between N and M. Thus, it would be mathematically inconvenient to thoroughly investigate
the asymptotic characteristics of the proposed procedure. Robbins, Simons and Starr (1967)
reported, only, limiting results concerning, N, M, and the coverage probability. More recently,
Eisele (1990) provided a one-by-orie sequential “solution” to the problem wusing a
randomization criterion. However, his decision rules are practically the same as those given
above, Ghosh and Mukhopadhyay (1980) treated the point estimation case for the same
problem under a squared error loss function with a linear sampling cost. Their proposed
one-by—-one sequential sampling procedures are also similar to those given above.

Since the foundation of the sequential decision approach by Wald (1947), sequential analysts
have adopted two main methodologies to tackle estimation problems: (i) point estimation,
where a specific cost function is assumed to assess the risk, and (i) fixed width confidence
interval estimation to attain a given nominal coverage value. Usually, these two methodologies
are applied separately in a given estimation problem. No attempt has been made (to the best
of our knowledge) to design sampling procedures that combine both point and interval
estimation in a unified decision theory framework. For example, assuming that a multistage
fixed width confidence interval estimation procedure is conducted to estimate the normal mean
& , would it be appropriate to use the same data to provide a point estimate for #7 If so,
how good is such an estimate in reference to the asymptotic risk efficiency and regret as
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defined by Robbins (1959), or vice versa? Some answers to such questions are provided in
later sections.

Our approach incorporates four main objectives in addition to satisfying the requirements for
fixed width confidence intervals. These objectives are to define a sampling technique (i) that
makes maximal use of all the sampling information; (ii) that is simple to apply and also saves
time in reaching decisions; (iii) that maintains the independence between the random variables

N and M so rigorous mathematical analysis can be performed to evaluate the performance of
the procedure; (iv) that can be used to tackle both point as well as confidence interval
estimation problems.

The key to our subsequent developments lies in the explicit determination of the optimal

sample sizes #" and m" from (2.1). To achieve the above stated objectives we impose an
additional (but reasonable) restriction while sampling from each population. The restriction
involves forcing the cost functions that control the risks associated with estimation of p; by
the corresponding sample measures from the i population for 7=1,2, to share common
weighting constant. Specifically, we assume that the costs incurred in estimating ; and
are respectively,

L (A)=A%03(X,— )’ +n (2.3)
and

L (WV=AcH YV, —u)?+m (2.4)

Cost functions similar to (2.3) and (2.4) were considered by Chow and Martinsek (1982),
Chow and Yu (1981), Martinsek (1988), and Woodroofe (1985, 1987). In decision theory the

constant A is treated as a "known” weight whose assignment is usually left to the decision
maker. None of the existing published literature discusses how the decision maker can
determine A. In this study, however, we specify A precisely.

The risks associated with (2.3) and (2.4) are given by

E(L,(A)=A%61E(X ,— 1))’ +n=A%cin '+ n (2.5)
E(L, (A)=A*63E(X ,,~— 1)? +m= A%cim™ '+ m (2.6)

Minimization of the risks in (2,5) and (2.6) provides the optimal sample sizes are n*= A ¢?
and m'=A05 Hence, the associated optimal risks are E(L ,-(A))=2x" and
E(L ,-(A)=2m". If n" and m" are used to construct a fixed 24 width confidence interval

for & with at least 100(1— @)% coverage, the constant A should be chosen such that (2.1)

is satisfied. Therefore, we obtain A>2¢°d" 2. Obviously, as d—0, A—co. In other words, as
the width of the interval gets smaller we expect larger estimation risk.
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Thus the optimal sample sizes are respectively,
n'=2a4%d %% and m*=2d %o} @7

It is clear that #* and " provide the minimum risks in estimating g, and g, by the
corresponding sample measures X . and —?m- within the quadratic loss function structures

and collectively they ensure at least a 100(1— @)% fixed width confidence interval for &.

2.1 Adjusting cost Functions to construct confidence intervals
and point estimates

Ghosh and Mukhopadhyay (1980) assumed the following cost function to obtain a point
estimate for 6,

where A)( is a "known” weight constant. (Here we assume that the cost of sampling is
a unit cost.). They proposed a one-hy—one sequential procedure with a switching rule and

provide (X y— Y, as a point estimate for 8. The question is, how might one adjust their
cost function to be able to use the available data to construct a fixed 2d width confidence
interval for ¢ with at least 100(1— @)% coverage? This can be accomplished easily by

linking the constant .4 that appears in (2.8) with the confidence interval requirements. It
follows from (2.8) that the risk is

E(an(A))=A( 0'%11_1 + Ggm_1)2+ ntm

Hence, the optimal sample sizes are
n*=V Ao, and m*=vV Ao, (2.9)

To establish the required confidence interval, »* and m' in (2.9) should satisfy (2.1).
Therefore we conclude that A should be chosen such that A= ¢ (V)d % It follows that the
optimal sample sizes are zn*=a’(c?+010,)d ° and m*=a*(V)d™ % which are the same
optimal sample sizes used in Robbins, Simons and Starr (1967).

Conversely, Robbhins, Simons and Starr (1967) could have used their one~by-one sequential
procedure for a fixed width confidence interval to provide a point estimate for & with squared

error loss function and a linear sampling cost. Their loss function would have had to have the
form

Lim(A)=a"d o1+ ) X— Yy O*+ntm,
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Thus far we have shown that both the point and fixed width confidence interval estimation
methodologies can be treated by one decision rule to achieve both goals. And while it appears
from the above determinations that, the constant A could be unknown, contrary to what has
been claimed in the sequential point estimation literature, a portion of A is indeed knowable,
as we have demonstrated.

In the following section we present a triple sampling procedure following the work of Hall
(1981), Mukhopadhyay (1985), Mukhopadhyay et al. (1987), Hamdy et al. (1987), Waoodroofe

(1987), Hamdy (1988) and Hamdy et al. (1996), to estimate g, and 45 though estimation of

n" and m". Consequently, we construct the required fixed width confidence interval for &.
3. Trnple sampling schemes

Since %' and m" are explicitly defined in (2.7) in terms of their own variances, we
implement the triple sampling procedure on each population separately,
In the first population, we start by taking an initial random sample of size #7=2 and

choose an appropriate y<(0, 1) to determine the second stage sample size by the rule

Ny = max {ng, (27a°S 2d"®) +1} (3.1)
and the final stage sample size from the rule
N=max {Ny, (24*S 4,d" %) +1} (3.2)

Similarly, we take mp=2 random samples from the second population and define M; and
M by the rules
M, = max {my, (2ya’S ?nod'z) +1} (3.3)
M=max {M;,(2a*S 4d H+1) (3.4)
Once we determine N by (2.3) and M from (3.4), we propose Xy for u) and Yy for ps
and the interval Iy y=(Xy— Yyzd) for §.

Results like those in (i), (i) and (iii) of Theorem 1 are still valid in this context. Regarding
(iv) of Theorem 1, we devote the following section to examining the sensitivity of the
confidence interval [y to possible shifts in .

4. Measuring the sensitivity of Iy, to departures in ¢

Fixed width confidence intervals are designed primarily to control both the precision of
estimation & and the coverage probability. Basically, the performance of the interval depends
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on three factors; (i) the sample sizes N and M; (ii) the validity of the normal models; (ii)

the robustness of the corresponding sample measures of 3,0‘% and a%.

Now assume that a triple’ sampling fixed width confidence interval J[x 4 has Dbeen
established to monitor &, for example in quality control for a manufacturing process, It is of
interest to explore the ability of Iy, to signify possible shifts in & when it is thought that
these shifts never took place.

Detection of departures is quite important since confidence intervals provide a range of
parameter values that would not be rejected if they were hypothesized as null values. To
elaborate further on this issue we consider the following two hypotheses. The null hypothesis
is Hyd=p,—py, which asserts that no shifts are recognized by the interval Iy, The
alternative hypothesis is Hy 8= pu;— us+ kd, which asserts that the parameter value departs
away by a magnitude of k& measured in united of & The probability of not detecting such a

"k-shift” in the parameter value can be expressed by the comresponding type Il error. Let A

be the type II error associated with triple sampling confidence interval [y . Then,

B: = PUXy—Yy—dl<d|H) |
E0(d(1~B(0IN "+ a3 ™) ™) — BO(— d(1+ (e iN "+ oM ™) ),

where @(-) is the cumulative distribution function of N((,1). A bivariate Taylor
expansion of E®( - ) and (i), (i) and (iii) of Theorem 1 provide
B:=0(a(1—RB)— O(—a(1+ &) —a(16) *Xa. kb, D(n* 1+ m" ™)+ o(d?), (4.1)
where

KAa, b, )=1—k¢a(l— )P 1~-E*—y+13}+ A+ R ¢(—a(l + D)2’ (1 + B?— y+13).

The special case of 2=0 in (4.1) yields the coverage probability of Iy as

P(sy = (1—a)— a(167) "¢ (a){a® — y+ 13} (n" '+ m" ™D+ o(d). (4.2)

The quantity {(a®— y+13)(169) !} is known as the cost of ignoring o> and o5 It is

clear from (4.2) that the coverage probability is less than the nominal value (1-—a). It has
been suggested by Simons (1968) and Hall (1981) to add an extra sample to the final stage to

correct the coverage. In this case we add a sample of size [(a®— y+13)(169) '] to each of
the final stage sample sizes.

Similarly, had 0% and 0'% been known and the fixed sample size confidence interval

employed the type II error Ay would be
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Br= 0(a(l1— k)~ &(—a(l+ k). (4.3)

We performed some computations based on equations (4.1) and (4.3) to provide a feel

concerning the ability of the interval Iy, to detect departures from the true parameter &.

We set the pair (n",m")= (24, 384), (43, 246), (61, 171), (76, 125), (96, 96) by analogy to
Hall's (1981) choices. We also set @=0.05 and %=0.5. The departure parameter was
permitted to vary over the range 0<A<3 by 0.1. Table 1 presents both the triple sampling
type II error, A and the corresponding fixed sample size type Il error, Ay

Inspecting the results in Table I, we come to the following conclusions. If the departure is
within the interval, ie 0<k<], then the triple sampling type I error J,<f8; the

corresponding fixed sample size type II error, This indicates that the triple sampling fixed
width confidence interval is more sensitive to departures occurring within the interval than the

fixed sample size confidence interval, especially for the smaller values of (%", m"). However,

B8y for large values of (#”,m”). The case of k=1 indicates that B,= f; independent of

(n",m"). The previous [inding is reversed outside the interval Iy, ie, for &>1. In this
case the fixed sample size confidence interval becomes more sensitive to shifts occurring
outside the interval than the triple sampling confidence intervals. As a general pattern, as &
increases both f, and [, decrease and approach 0 as /k—3. Figure I provides the operating

characteristic curves for results presented in Table L

9. The asymptotic regret of estimating z; and p,

Robbins (1959) defined the asymptotic regret as @ the measure of the opportunity cost of
using multistage techniques instead of the fixed sample size procedures had the nuisance
parameter(s) been known. Define the triple sampling risks by

E(L)(A) = A’ 61E(X y— 11)* + E(N) (5.1
E(Li(A))=A*63E(Y y— p12)*+ E(M) (5.2)
We then make use of the independence hetween the random variables N=#,n+1, - and

Xy for all # and M=m,m+1,- and Yy for all m and write
E(L\A)=A*o{E(N" 1) + E(N)
E(Ly(A)= A3 EM™) + E(M)
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We then apply (i) of Theorem 1 and Theorem 2 with H{)=¢"1, ¢ (D=—¢2, g (H=2¢"

and the remainder term will be of order o(dz). Thus, we obtain
E(LA)=2n"+27"1+0(1)

and

Therefore the asymptotic regrets of X n and TM are as follows

and

E(L (A)=2m"+2y"  +0o(1)

wy=E(Ly(A) = E(L - (A)=27""+0o(1)

wy=FE(Ly(A)Y—E(L ~(A)=27""+0(1)

(5.3)

(6.4)

It is clear from (5.3) and (5.4) that the triple sampling asymptotic regret is equivalent to the

loss of (277" observations from each population had G? and o‘% been known and the fixed

size sampling procedure utilized, It has been recommended by Hall (1981) and others to set

y=1/2 for practical purposes.

Since our theoretical developments are asymptotic in nature, we present simulation studies

to explore the small 1o moderate sample size performance of our proposed procedure in the

next section.

Table I. Triple Sampling & Fixed Sample Type II Errors y=0.5, 2=0.05

E | n'=2U|n"=43| n"=61|n"=76|n"=96 fixed | & | n"=24| n"=43| n"=61| n'=76| n" =96/ fixed
m" =384 | m' =246 | m" =171 | m"=125| m" =95 m =34 m' =26 m"=171| m"=125| m" =96

0 0.929 0.937 0.94 0.94 0.94 095 15 0.182 0.175 0.173 0172 0172 0.164
0.1 0.925 0.933 0.935 0936] 0936 0.946| 1.6 0.138 0.131 0.129 0.128] 0128 0.12
0.2 0911 0.919 0.922 0922 0922 0832 1.7 0.102 0.096 0.094 0.093] 0.093] 0.035
0.3 0.888 0.896 0.899 0.899 0.9 091] 1.8 0.074 0.068 0.066 0.066| 0.066| 0.058
0.4 0.856 0.964 0.867 0.867| 0867 0877 19 0.052 0.047 0.045 0.045| 0.045| 0.039
0.5 0.815 0.823 0.825 0.825 0.825 0.835 2.0 0.035 0.031 0.03 0.03 0.03 0.025
0.6 0.765 0.772 0.774 0.774| 0774 0.983] 2.1 0.024 0.02 0.02 0.019] 0.019| 0.016
0.7 0.707 0712 0.714 0714 0714 0,721 22 0.015 0.013 0.012 0.012] 0012 0.005
0.8 0.642 0.646 0.647 0.647] 0647 0662 2.3 0.01 0.008 0.008 0.007| 0.007] 0.005
0.9 0.572 0.574 0.575 0575 0575 0578 24 0.006 0.005 0.004 0.004 0.004| 0.003
1.0 0.5 0.5 0.5 0.5 0.5 05 25 0.003 0.003 0.003 0.003] 0.002| 0.002
L1 0.428 0.426 0425 0425| 0425 0422 26 0.002 0.002 0.001 0.001 0.001 0.001
1.2 0.358 0.354 0.353 0.352| 0362 0.348] 27 0.001 0.001 0.001 0.001 0.001 0
1.3 0.292 0.287 0.285 0.285 0.285 0.278| 2.8 0.001 0 0 0 0 0
1.4 0.233 0.227 0.225 0.224| 0 224 0217 29 0 0 0 0 0 0
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Figure 1

6. Simulation results

A series of 5000 simulation were performed to evaluate the performance of the triple
sampling procedure equations (3.1) and (3.3)-(3.4) under small to moderate sample sizes. The

moderate optimal sample sizes (n”,m") were set to (24, 384), (43, 246), (6, 171), (76, 125),
(96, 96), (125, 76), (246, 43), (171, 61), (384, 24). These choices are the same as those used by

Hall (1981) in his simulations. We also took #;=0,x;=0,06,=1, and ¢;=V #*m’"!. The
initial sample sizes (2, ) were set al (5,5), (10,10) ad (15,15) to study their impact on the

coverage probahility in general and on N and M in particular. The design factor ¥ was set
at 0.3, 0.5 and 0.8 and the confidence coefficient was set at 0.90, 0.95 and 0.99. Results for

smaller choices of (%", m") showed similar patterns and are omitted for brevity.
Detailed findings for some selected cases are presented in Table I In each row of a given

case, we provide summary statistics corresponding to (»n", m"), their estimates (N, M), their
standard errors (s.e. N, s. e.T/I), the observed regret 70, and finally the estimated coverage
P

We notice that the estimated coverage P is larger than or equal to the nominal value
(1—a) in all cases. However, such performance depends on the choice of both (#g,m) and
y. Of the cases examined the best performance is achieved when ¥=0.5 and

(ng, mg) = (10, 10). In this case the procedure seems to have no tendency to oversample, as
is evident by comparing (#*,m*) to the corresponding estimates (N, M). The estimated
regret ‘@ is bounded as expected from our theoretical results in (5.3), even for small and

moderate optimal sample sizes. The estimated value Sof §is always 0 for all cases (data
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not shown).

To compare our results with those of Iall (1981), we find that the estimated coverage P is
larger than Hall's without adding extra samples to the final stages sample sizes. This remark
is supported by considering our cost of ignorance {(a®— y+13)(167) "'}, which is less than
Hall's (1981) cost of ignorance, {(a*— y+5)(29) 1}

Table II. Triple Sampling Simulation
nmy=my=5, «=0.10, y=0.3 ny=my=15, «=0.10, y=0.3

n| Nise N m'| M|se M ]| P n'| Nlse N m'| M|se M »| P
24 | 201 o1sa| a4 3me| 1om| 267 osmel | 24 | 247]  omsl  3m4| 24| omm| 52| ooas

43 36 0262 245 2344 0.824| 2.36] 09148 43 419 0.185 246 2389 0.645| -L48| 09404
61 52.2 0348 171| 1897 0671 -066| 09168 61 573 0.257 171 1637 0534| -580| 00388
%6 66.6 0.4 125 114 0.567| 10.64| 09102 76 70.7 013 125| 1186 0.453| =293} 0.9552
96 85.5 0.487 96 865 0474 044| 09136 96 50 0.372 96| 891 0377 -233 0.938-2"

125 1145 0.561 w661 0404| 342 09184 125 181 0.452 76| 707 031 -4.83| 09416
171 159.2 068 61| 9528 0352 761 09172 171 1638 0.526 6Ll 971 0.257| 2.44| 09308
246 235.1 0.807 43 635 0263 1398) 0072 246 2372 0.639 43 42 0194 28| 08420
384 3727 1.027 24| 206 0135 -7.04| 09204 384 3777 0.790 24| 248 0.119| 6.25| 0.9456

ng=my=15, a=0,01, r=0.8 my=my=15, a==0.05, y=0.5
n| N|se N wm'| M|se M o | P | N|se N w'| M|se M| w| P
24 5] o1z asa| amel  om| 2046 09ms2| | 24 | 23| oooe| sm4| 4m08] osvr| 83| voms
43 | 413 0189|246 25| 0627 1154 09920) | 43 | 421 o0177| 245 256 0604| -286] 09688
61 57| 0285 17| 1628 053 391|088 | &1 | 67| o0zs| 17| 176 04ss| -365] 0976

% 706 0.314 1% 177 0.445| -091| 0.9390 76 771 0.261 125 1293 0364| -236) 09756
96 B9.6 0.378 96| £96 0382| 23B4| 09586 95 987 0.317 96| 977 0298, L73| 09714
125 1183 0.448 % N3 031 -338| 0.9920 125 1282 0.369 % 768 0261 276| 09688
171 164 0.521 61| S77 0259 -236] 0.9900 171 1769 0.456 61| 6.2 0228) 8.83| 0.9604
246 Z239.3 0.632 43! 418 0183 277 09918 246 %62 0.628 431 4286 0179 -0.17| 09706
384 400.1 0.871 24| 248 0118 946| 08938 324 3809 0.807 2 01| 0Q17{ 0970

ny=my=10, «=0.05, y=40.5 ng=me=10, «=0.01, y=0.8

w'| Nl|se Nl m'| M|se M w| P n'| N |se N m'| Mise M| w| P
24 | 2268 oue| 8] 3818 0645|223 09676| | 24 | 221| oue| 3ma| 3|  oest| oa7] ogowo
43 | 301 0199 246 2426 0527) -041] 00660 | 43 | 3092( ong9| =248 2428 osm| a78) 0gs72
6. | s67| oms| 1m| 187 oass| 18| 0%ss| | s1 | se7| o02s3) 17| 1674 o0a4qr| -137| osere
76 | 78| o028 12s| 1204| 03| ossjooes| | 7 | 71| o0me| 125 1208| o03m] 363 098
96 | o8| oas| o8| ou1| o3| w19 osess| | o6 | s8] oam| | e13] 03w 27| osws
125 | az] ozs| 7| me| ooss| 1a1|osss| | 125 | 22| osssy w| me|  om| 17| oserd
11 | 1678| o444 e| 57| o2%| -o2s| ovme| | 1 | 7| o438 &1 1| o024 4m) 0se%
246 | 2428| 053] 43| 391 olgs| 330 ossas| | 26 | 2424 053] a3 37| oase) -1.83] 09884
34 | 3829 oeeo| 24| =23 o7 -740| osero| | 3.a | aus| 11s6| 2| wa|  ous| -0l csms
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