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Abstract

We are mainly interested in hazard rate changes which are usually occur in
survival times of manufactured products or patients. We may expect early failures
with one hazard rate and next another hazard rate. For this type of data we apply a
hazard rate change—point model and estimate the unknown time point to improve the
model adequacy. We introduce change-point logistic model to the discrete time hazard
rates. The MLEs are obtained routinely and we also explain the suggested rmodel
through a dataset of survival times.

1. Introduction

Statistical inference such as statistical hypothesis tests or confidence intervals on the
unknown time point with respect to which parameters of interest change is called
change-point problem. Many researchers have studied the change-point problem in various
respects, for example, according to the ohjects of changes, parametric versus nonparametric
methods. Change-point models on means, variances and regression coefficients are the
well-known subjects. In classical change—point problem the main concern has been on the
mean changes in a sequence of random variables. If the functional forms of distributions are
known parametric methods such as the maximum-likelihood estimation(MLE) and the
likelihood ratio test(LRT) are usually used. Hinkley(1970), Worsley(1986) and Siegmund(1988),
among others, are the researches of this type. On the other hand Bhattacharyya and
Johnson(1968), Darkhovskh(1976), Carlstein(1988), and Boukai(1993), Chang, Chen and
Hsiung(1994) studied the change-point problem in a nonparametric set
When a data structure has changed after a certain point of time one regression model to study the data
obviously leaves the data unfitted or poorly explained by the assumed model. By applying change-point
hypothesis the switching regression models have been studied by, among others, Quandt(1958, 1960),
Brown, Durbin, and Evans(1975), Kim(1994), Chen(1998). We are mainly interested in hazard rate

changes which are usually occur in survival times of manufactured products or patients. Hazard rate is a
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manufactured products or patients. Hazard rate is a very important concepts in reliability
theory. We may expect early failures with one hazard rate and next another hazard rate. For
survival time data there exists high initial risk but it settles down to lower long term risk.
For this type of data we apply a hazard rate change-point model and estimate the unknown
time point to improve the model adequacy for the given data. We introduce change-point
Jogistic model to the discrete time hazard rates. The MLEs are obtained routinely and we also

explain the suggested model through a real dataset of survival times.

2. Discrete Hazard Rates

Kaplan-Meier survival estimator is important in analyzing censored data and its survival
curve can easily be obtained via usually used statistical softwares. But it sometimes is
inefficient compared to parametric survival estimators. Furthermore we cannot directly compare
them by eve even in the absence of statistical noise. The hazard rates plot is more efficient
in comparing survival times of two or more treatments. In this section we introduce the
discrete hazard rate for discretized survival data even if it originally is in continuous form.

Example 1. The data in Table 1 denotes survival times for bl patients of head-and-neck
cancer (Efron, 1988), which was originally conducted by the Northern California Oncology
Group. We may discretize the data by one-month intervals as shown in Table2. The notation
‘+’ denotes censored observation.

Table 1. Head-and-neck cancer survival times for 51 patients
7, 34, 42, 63, 64, 74+, 83, 84, 91, 108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154, 157,
160, 160, 165, 173, 176, 185+, 218, 225, 241, 248, 273, 277, 279+, 297, 319+, 405, 417, 420,
440, 523, 523+, 583, 594, 1101, 1116+, 1146, 1226+, 1349+, 1412+, 1417

We introduce notations to explain discrete hazard rates model. Let #; = number of patients
at the beginning of month i, ¥; = number of patients who died during month i, yz"=nurnber
of patients lost to follow-up during month i. We may assume that the number of deaths y;

is bhinomially distributed given #;. Hence the binomial density is of the form

( 31;“)71'2' y’(lm‘“ﬂ'i) T 9=0,1,2,, m

7

Table 2. Discretized survival times by one-month intervals
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month n; Vi ¥; month n; Vi Vi
1 51 1 0 25 7 0 0
2 50 2 0 26 7 0 0
3 43 5 1 27 7 0 0
4 42 2 0 23 7 0 0
5 40 8 0 29 7 0 0
6 32 7 0 30 7 0 0
7 25 0 1 31 7 0 0
8 24 3 0 32 7 0 0
9 21 2 0 33 7 0 0
10 19 2 1 34 7 0 0
11 16 0 1 35 7 0 0
12 15 0 0 36 7 0 0
13 15 0 0 37 7 1 1
14 15 3 0 38 5 1 0
15 12 1 0 39 4 0 0
16 11 0 0 40 4 0 0
17 11 0 0 4] 4 0 1
18 11 1 1 42 3 0 0
19 9 0 0 43 3 0 0
20 9 2 0 44 3 0 0
21 7 0 0 45 3 0 1
22 7 0 0 46 2 0 0
23 7 0 0 47 2 1 1
24 7 0 0

In this density z; is interpreted as discrete hazard rate defined by ;= P (patients dies
during ith interval | patients survives until beginning of ¢th interval).

The life-table survival estimates of x; 1s given by T;=7v;/n;. When #;>(0 this estimate
is always unbiased for x;, but is usually too variable to be of direct use as shown in Figure
1. As was discussed by Efron(1988) we can do better with a parametric model if the
parametric assumptions are correct. The plot of 7?1 against survival time is shown in Figure

1. Because of noise in the observed data we cannot easily catch the functional form of the
smoothing curve representing the plot. A logistic regression can be a very natural one in
modelling the hazard rates plot. But one single logistic model does not seem to be appropriate
to modelling the hazard rates plot and so in the next section we suggest a logistic model
with one change-point at some unknown time point.

3. Change-Point Logistic Model

Let x be a single covariate for the binomial response Y among #; trnials with success

probability m(x). Consider a logistic model defined as
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Figure 1. Plot of life-table hazard rates against time
To simplify the notation we denote

log {#(x)/(1— n(x)) } = logit(x).
covariates according to time sequences are denoted by x,,+:-,x,. We are interested in the

change-point logistic model with changing coefficients according to some time point x,,
a +.8 1%
logit (7 ;) =

The observed
which is the change-point. The change-point logistic model is defined by

i=1,-

-k
a +lek+.82(xi_xk),

3.1
a model with no change—point.
Let

i =k+1l,-,n
We note that the value of logit(z;) coincides at the change-point in the model. The main
focus is to estimate the change-point and also to check for the model adequacy compared to

(@) =1log L{( @) can be written as

0=(a,B,,B3) be a vector of unknown coefficients. Then the loglikelihood function

log L(6) oc Z“{yilog( lf

-7” Y+ nlog(l—1n,)}
+ 3 Glog(TE

1_ﬂ_i)—i—n,—lo,g.{(l—ﬂrz-)}
If we substitute logit(z;) defined in (3.1) to the above equation then we can express it in
terms of components of @.

2

Next we discuss an estimation technique for the parameters. The maximum likelihood
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estimator & is defined as an maximizer of loglikelihood function for given x,. That is

-~

@ = arg max log L( @) .
In order to obtain the MLEs of unknown parameters @, f£; and also unknown change-point

x, we represent the likelihood function in the following form

e = Z“[yi(a-k B1x:)— n; log(1+ expla + By x;)]

+ ;itl[yi{cﬁ Bixp+ B (x; —x) } — n; log(1+ exp {a+ Byx, + By (x; —x) }]

The MLEs of @, 81, 82 can be obtained by a numerical methods such as
Newton-Raphson iterative method. We briefly explain the Newton-Raphson procedure to

obtain the MLEs of @ given the change-point x.. Let

=( olG) i) 31(0))
a da ’ 9B 08y

be the vector of first order derivatives with respect to @, 81, B2, respectively. The first

order derivatives are calculated as

Q) ﬁi f;

_a%)_ = 2 v, — P Nl — i=$rlniﬂ-21'

85(602 — ﬁ_;yixz’ + x4 _2; V= é;nixiﬂ'l[““ﬂﬁe ,_i Wy,
: o =, = i= 1

3l 8)
085 = i=$:f1y‘-xi_ ol i=%1yi + % i=$rlni i — i=$r1n’ﬂx’ﬂ2"

exp (@t B1x;)
1+expla+ B1x;)

where

Ty =

and

exp {@+ Bix,+ By (x;—x,) }
1+exp{at Bixe+ By (x;—xx)} -

Similarly we can obtain second order derivatives to find the Hessian matrix. The MLEs are
obtained by Newton-Raphson algorithm in a routine method. As a byproduct we can also
obtain the covariance matrix of MLEs from the Hessian matrix at the final step of iterations.

T ==

4. A Practical Example

In this section we explain the change-point hazard rate model via logistic regression for the
data given in Table 2. We are interested in modelling the hazard rates using change-point
logistic model defined in (3.1). One single logistic model does not seem to be appropriate to
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modelling the hazard rates plot and so we suggest a logistic model with one change-point at
some unknown time point. By varying the assumed change-point x;, £=2,3,-,n—1, we
first find the time point which maximizes likelihood function and next the estimates of
regressionn coefficients for the given x,. A Fortran program to find MLEs of logistic
regression coefficients and change-point was performed on Unix Enterprise 3000, The MILEs
of a, By, B, are a=—23.915, Zﬂ =(.400, B, =—10.065, respectively with change-point at

%, =25 . On the other hand if we assume a logistic model with no change-point the MLEs of

¢ and B are a=--2.281, B=-—0.031, respectively. Hence the MLEs of discrete hazard
rates are obtained from the relationship

exp(—3.9154+0.400x;)

| T+exp(~3.915+0.400x) - for 5 s
= exp {—3.915+0.400 x5 — 0.065 (x; — 25) } . '
for 755

1+exp {—3.915+0.400 x5 —0.065 (x; —x5) } °

where x; is the survival time measured in one-month interval. The plot of 7?, against x; is

shown in Figure 2. We see a peak point at x,=5 and the scheme of logistic regression

changes with respect to this point. The covariance matrix of estimated parameters are given
by
0.3580 —0.0004 0.0024

Cov( @) =|—-0.0664 0.0135 —0.0009
0.0024 —0.0009 0.0004

0.20

0.15

018

005

0
L

Figure 2. Plot of 7, against survival times under change—point model
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The expected (or predicted) counts are obtained [rom the estimated probabilities multiplied
by the number of patients surviving at the beginning of each interval. The expected counts
and signed deviance residuals are given in Table 3. Here change-point corresponds to the
change-point logistic model. On the other hand cubic-linear denotes the cubic-linear spline
model with join point at 11 month. The cubic-lincar logistic model was suggested by
Efron(1988) to improve the model goodness—of-fit compared to linear or cubic logistic model.

Table 3. Expected counts and signed deviance residuals for two models

expected counts signed deviance residuals
month n; ¥, . .. . .
change-point  cubic-linear | change-point cubic-lincar
1 51 1 1.47 0.76 -0.42 0.27
2 50 2 2.12 2.18 -0.09 -0.13
3 48 5 2.98 4.16 1.11 0.42
4 42 2 3.78 531 -1.04 -1.73
5-6 72 15 9.02 10.40 1.97 1.46
7-8 49 3 5.46 5.41 ~1.21 -1.19
9-11 56 4 542 3.54 -0.67 0.25
12-14 45 3 3.63 2.18 -0.35 0.54
15~18 45 2 2.95 2.05 -0.60 -0.03
19-24 46 2 2.25 1.91 -0.17 0.06
25-31 49 0 1.58 1.80 ~1.79 -1.91
32-38 47 2 0.98 152 0.91 0.38
39-47 28 1 0.36 0.78 0.88 0.24

The change-point logistic model seems to be well fitted in the respect of expected counts
and signed deviance residuals. The sum of squares of signed deviance residuals is 13.64 with
9 degrees of freedom for the change-point logistic model. On the other hand for the
cubic-linear logistic model it is 11.02 with 8 degrees of freedom. We note that there is no
significant improvement for the more complex cubic-linear model.

5. Summary and Further Remarks

We considered a change-point logistic model on discrete hazard rates of survival time. The
MLEs of logistic regression parameters and change-point were obtained. Newton-Raphson
iterative algorithm was used to obtain MLEs. We can also obtain the covariance matrix of
estimated parameters. The suggested model was explained through a real dataset of
head-and-neck cancer survival times. We checked model goodness-of-fit in the respect of
signed deviance residuals. The results were compared with that of cubic-linear logistic model
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with join point. The proposed change-point logistic model on hazard rates also performed
quite well,

We didn’t discuss the distribution of estimated change-point. But this topic is also an
interesting problem in change-point model. The limiting distribution and other related problems
will be remained as future researches., We also expect that other generalized linear models
with different links may improve the model goodness-of-fit to the given data.

References

[11 Bhattacharyya, G. K. and Johnson, R. A.(1968). Nonparametric Tests for Shift at Unknown
Time Point, Annals of Mathematical Statistics 39, 1731-1743.

[2]1 Boukai, B.(1993). A Nonparametric Bootstrapped FEstimate of the Change-point,
Nonparametric Statistics, 3, 123-134.

[3] Brown, R. L., Durbin, J. and Evans, J. M.(1975). Techniques for Testing the Constancy of
Regression Relationships over Time (with Discussion), Journal of Royal Statistical
Society B, 149-192.

[4] Carlstein, E.(1988). Nonparametric Change-point Estimation, The Annals of Statistics, 16(1),
188-197.

[5] Chang, 1. S., Chen, C. H. and Hsiung, C. A.(1994). Estimation in Change~Point Hazard
Rate Models With Random Censorship, Change-Point Problems, Institute of
Mathematical Statistics, Lecture Notes 23, 78-92.

{6] Chen, 1.(1998). Testing for a Change-point in Linear Regression Models, Communications
in Statistics, Theory and Methods, 27(10), 2481-2493.

[7] Chen, J. and Gupta, A. K. (1997). Testing and Locating Variance Change Points with
Application to Stock Prices, Journal of the American Statistical Association, 92,
739-747.

[8] Darkhovskh, B. $.(1976). A Nonparametric Method for the Posterioi Detection of the
"Disorder” Time of a Sequence of Independent Random Variables, Theory of
Probability and Application, 21, 178-183.

[9] Hinkley, D. V.(1970). Inference About the Change-Point in a Sequence of Random
Variables, Biometrika 57, 1, 1-17.

[10] Kim, H. (1994). Tests for a Change—point in Linear Regression, Institute of Mathematical
Statistics, Lecture Notes 23, 170-176,

[11] Quandt, R. E.(1958). The Estimation of the Parameters of a Linear Regression System
Obeying Two Separate Regimes, Journal of the American Statistical Association, 53,
873-880.

[12] Quandt, R. E.(1960). Tests of the Hypothesis that a Linear Regression System Obeys
Two Separate Regimes, Journal of the American Statistical Association, 55, 324-330.



Estimation on Hazard Rates Change-Point Model 335

[13] Efron, B.(1983). Logistic Regression, Survival Analysis, and the Kaplan-Meier Curve,
Journal of the American Statistical Association 83(402), 414-425.

[14] Siegmund, D.(1988). Confidence Sets in Change-Point Problems, International Statistical
Review, 56, 1, 31-48.

[15] Worsley, K. J.(1986). Confidence Region and Tests for a Change-point in a Sequence of
Exponential Family Random Variables, Biometrika, 73(1), 91-104.



