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Optimum Strategies in Red & Black

Chul Hwan AhnV

Abstract

In a game called red and black, you can stake any amount s in your possession.
Suppose your goal is 1 and your current fortune is f, with 0 < f< 1. You win back
your stake and as much more with probability p and lose your stake with
probability, ¢=1—5. In this paper, we consider optimum strategies for this game
with the value of p less than % where the house has the advantage over the player,
and with the value of p greater than %4 where the player has the advantage over the
house. The optimum strategy at any f when <% is to play boldly, which is to bet
as much as you can. The optimum strategy when p>% is to bet f-a with @, a
sufficiently small number between 0 and 1.
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I . Introduction

In a game, red and black, you can stake any amount s in your possession. Suppose your
goal is 1 and your current fortune is f, 0< f<1. You win back your stake and as much
more with probability p and lose your stake with probability ¢( =1—#). This problem was
first considered by Coolidge (1909), but the optimum strategy when p<% was presented by
Dubins and Savage (1965). They showed that the bold play is optimal when p<%, and
provided the basic idea of proving this theorem. In this paper we consider the optimum
strategy when p>'4. We also complete the proof of the theorem for optimum strategy when
p< Y%, given by Dubins and Savage (1965).

We will consider an optimum strategy at any f when p<!% in section 2, and where p> %
in section 3. In section 4, we consider future topics to be studied related to this problem.

II. Optimum Strategy with p<%

The strategy 1 is to bet a small amount each time. We can easily see that this is a bad s
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trategy. Consider a case, p=.3 and f= .2. Suppose you bet .01 each time so that you could
play at least 20 times. Consider the bet .01 as 1, then the current fortune .2 will be 20 and
the goal 1 will be 100. By the gambler's ruin probability(Parzen(1962), p233), the probability
that a player with the current fortune 20 will go bankrupt can be written as follows.

The probability that f will go to 0 when f=K=20 and N=100 can be written as
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The strategy 2 is to bet as much as you can. We will call this a bold strategy since you
bet you entire fortune f or enough to reach 1 whichever is least. A bet function S(f) under
bold strategy can be written as

S(H=F <4
=1—-f 2%

Theorem 1. The bold strategy at f is optimal for p< %

Proof : First, we will define a function Q(f) to denote a probability of reaching 1 at any
f between 0 and 1 under the bold strategy. @Q(f) is continuous, non-decreasing, and
Q0)=0,Q(1)=1, and ¥%)=p Moreover, Q4)=p  X%)+q- Q0)=5" and
QH)=p- AD+a- A%)=p+0—p) - p

we can now derive Q(f) more generally

i) f/SY%:Betf
QUN=71- A2H+aq- X0)=p+ A2/

ii) f=%:Betl—f
QN)=p- XD +qg- X2f~1)=p+q- X2f—1)

In summary,
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O(f) = { (2N, =% e}
p+aX2/—1), fz% (2)
We now consider a strategy such that you bet s at first and then play boldly. Then, the
probability of reaching 1 under this strategy will be p- X f+s)+qg- X f—s). To prove
theorem 1 is equivalent to show that

P Xf+9)+a- Qf—9)=Q(f) for all fand s 3

According to Dubins and Savage(1965), it suffices to establish (3) for binary rational values
of fand s, that is, for numbers of the form K-2 " where K and #, non-negative integers
and K-2 "=1 since Q(f) is continuous. A number of this form, K-2 " will be said to

be of order at most #. It is trivial to verify (3) if f and s are of order at most O or 1.

When n=l,K-2_"=—Ié{‘=0 or —'21— or 1.

If /=% and s= 1%,
then LHS. of 3)=p- Q1) +q- X0)=p
R.H.S. of (3)= %)= p. Thus, (3) holds.

Next, suppose that(3) has been established for all binary rationals f and s of order at most
n+1.
Rewrite (3) as Q(f) —p- XAf+s)—q- Qf—s) =20 4)

Case 1. f—s=%

Using (1) and (2), we can write
QU )=p+aq- QA2/-1)
Xf+s)=p+q- A2f+2s—1)
Af—s)=p+aq- Q2f—2s—1)

Therefore, (4) can be rewritten as
QUNH—p- Afts)—q- Af—s)
=pta- - X2/ —p-[p+a- X2f+2s—D]—q-[p+q- X2f—25—1)]
=q-[Q2f—1D)—p- 2f~1+28)—q- X2f—1—25)]
2( since 2f—1,2f—1+2s, and 2f—1—2s are of order at most #.
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Case 2. f—s=Y<f

Using (1) and (2), we can write
QU Y=p+ta- A2f—1)
QXf+s)=p+aqg- Q2f+2s—1)
QAf—s)=1p- Q2f—2s)

We now claim that f= %. If that is not the case, then f> %. And so s=Y% since
f—s<1%. This will gives us f+s>1, which is contradiction.

As a result, X2/—1)=p- Q4/—2).

Now, Q(f)—p- Q(f+s)—qg- XSf—s)
=ptq- - X2 —D—p-[pta- X2 +2s—1D]1—q- p- Q2f—2s)
=p+q-p QUf~2)—p —p-q- X2f+2s—1)—q- p- X2f—2s)
But Q2f—%)=p+q+ X4f—2) since 2f— % > %.
=p+p-[QOf %) —pl—p2—baq- A2 +25—1)—q+p- X2 —2s)
=pl2f—%)—q- Q2f—29)+1—2p—q - QU(2f+25s—1)]

But note that the following inequally holds ;
1-2p—q- X2f+2s— 1)z —p - X2f+2s—1),
which can be easily seen once it is rewritten as (1—2p [1—Q2/+2s—1)]1=0
since p< % and Q(2f+2s—1)=1.

Therefore,

QU)—p- Xf+s)—q- Af—s)
=p - [QQf—1%)—q- X2f—28)+1—2p—q- Q2f+2s—1)]
2p- [Q2f— %) —q- Q2f—28)—p- X2f+2s—1)]
=p - [Q2f—1%)—q- X2f—%—(2s— %)) —p- Q2f— % +2s— 1%)]
2( since 2f— %, 2f—2s, and 2f+2s—1 are of order at most .

This will complete the proof of theorem 1. The proofs of Case 3 (f+s= %) and Case 4

(f£ Y% <f+s) are similar to those of Case 1 and 2 respectively and thus are omitted here,
Q. E. D
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M. Optimum Strategy with »>%

Theorem 2. For p>1% there exists a strategy which wins with probability one. The
strategy is to bet f-a with 0<a<]l. For a sufficiently small, f reaches 1 with probability

one.

Proof : The current fortune f can reach f+ f- @ with probability p» and f—f-a with
probability ¢(=1—p). Let us define the random variable =z, at the zth play which has 1+a

with probability p and 1—a with probability ¢. Then the fortune f changes as follows :

f.—)f. zl_)f- zl. Zz—)..._)f. zl. 22.“‘271

Let f, denote f+ z,+ 25+ 2, Then log f,=logf+log z,+1log z,+-+log z, .
Now, consider the expectation of logz . E(logz)=p- log(l+a)+q- log(l—a) .
Thus, E(logz) is a function of a, say g(a) .

We can easily see that g(0)=0 , g'(a)=—1§_—a—Tq_—a ,and g (0)=p—¢>0 .

Therefore, g(a)>0 for small @>0. And log f, goes to infinity almost surely, and so does
f, , which implies that the probability of f reaching 1 is equal to one.
Q. E. D.

IV. Conclusion

The optimum strategy is to play boldly, thus to bet as much as you can when $<Y%, and
to bet the small portion of the current when p>%. We can consider the same kind of
optimum strategies in the case where the bet is discrete. This problem can also be many
other problems in stochastic processes.
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