Catalytic Combustion of Methane over Perovskite-Type Oxides

  • Hong, Seong-Soo (Division of Chemical Engineering, Pukyong National University) ;
  • Sun, Chang-Bong (Division of Chemical Engineering, Pukyong National University) ;
  • Lee, Gun-Dae (Division of Chemical Engineering, Pukyong National University) ;
  • Ju, Chang-Sik (Division of Chemical Engineering, Pukyong National University) ;
  • Lee, Min-Gyu (Division of Chemical Engineering, Pukyong National University)
  • Published : 2000.06.01

Abstract

Methane combustion over perovskite-type oxides prepared using the malic acid method was investigated. To enhance the catalytic activity, the perovskite oxides were modified by the substitution of metal into their A or B site. In addition, the reaction conditions, such as the temperature, space velocity, and partial pressure of the methane were varied to understand their effect on the catalytic performance. With the LaCoO3-type catalyst, the partial substitution of Sr or Ba into site A enhanced the catalytic activity in the methane combustion. With the LaBO3(B=Co, Fe, Mn, Cu)-type catalyst, the catalytic activities were exhibited in the order of Co>Fe Mn>Cu. Futhermore, the partial substitution of Co into site B enhanced the catalytic activity, whereas an excess amount of Co decreased the activity. The surface area and catalytic activity of the perovskite catalysts prepared using the malic acid method showed higher values than those prepared using the solid reaction method. The catalytic activity was enhanced with decreased methane concentration and with a decrease in the space velocity.

Keywords

References

  1. J. Catal. v.132 Oh, S. H.;P. J. Mitchell;R. M. Siewert
  2. Science v.257 Rubbin, E. S.;R.N. Cooper;R. A. Frosch;T. H. Lee;G. Marland;A. H. Rosenfield;D. D. Stine
  3. J. Catal. v.66 Moro-oka, Y.;Y. Morikawa;A. Ozaki
  4. Appl. Catal. v.68 Briot P.;M. Primet
  5. Appl. Catal. v.66 Baldwin T. R.;R. Burch
  6. Appl. Catal. v.64 Gabrovski, E.;M. Guenin;M.-C. Marion;M. Primet
  7. Catal.Today. v.17 Najbar, M.;M. Barnsko;W. Jura
  8. Appl. Catal., B v.8 Saracco, G.;G. Scibilia;A. Iannibello;G. Balsi
  9. Appl. Catal., A v.156 Zhang, Z.;K. Chen;Y. Jl;Q. Yan
  10. Science v.171 Libby, W. F.
  11. J. Ind. & Eng. Chem. v.4 Yang, J.S.;G. D. Lee;B. H. Ahn;S. S. Hong
  12. Chem. Lett. Teraoka, Y.;H. Hakebayzshi;I. Moriguchi;S. Kagawa
  13. KJChE v.14 no.6 Hong, S.S.;G. D. Lee;J. W. Park;D. W. Park;K. J. Oh;K. M. Cho
  14. Powder Metall. v.2L Anderson, D.J.;F. R. Sale
  15. Ann. N.Y. Acad. Sci. v.272 Voorhoeve;R. H. J.;J. P. Remeika;L. E. Trimble
  16. Appl. Catal. v.26 Arai, H.;T. Yamada;K. Eguchi;T. Seiyama
  17. Catal. Today. v.8 McCary, J. G.;H. Wise
  18. Chinese Sci. Bull. v.40 Zhang, Z.;L. Chen;Q. Yan;X. Fu
  19. J. Chem. Soc. Chem. Commun. Omata, K.;O. Yamazaki;K. Tomata;K. Fujimoto
  20. Catal. Lett. v.23 Ding, W. P.;Y. Chen;X. C. Fu
  21. Reaction Kinetics & Catalysis Letters v.66 Hong, S.S.;J. S. Yang;G. D. Lee
  22. Physica v.19 Johker, G.H.;J. H. Van Santen
  23. Jpn. J. Appl. Phys. v.14 Obayashi, H.;T. Kudo
  24. Solid State Chem. v.14 Cook, R.L.;A. F. Sammuells
  25. Catal. Today. v.8 Yamazoe, N.;Y. Teraoka
  26. Ind. Eng. Chem. Prod. Res. Dev. v.24 Seiyama, T.;N. Yamazoe;K. Eguchi
  27. J. Kor. Ind. & Eng. Chem. v.7 no.3 Moon, H.D.;H. I. Lee
  28. J. Kor. Ind. & Eng. Chem. v.6 no.5 Baek, Y.S.;K. H. Yoon;H. J. Kim
  29. J. Kor. Ind. & Eng. Chem. v.9 no.6 Eom, G.T.;J. W. Park;J. M. Ha;H. S. Hahm