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Analysis of Dynamic Characteristics of Structural Joints Using
Stiffness Influence Coefficients
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This paper proposes a new modeling method for joints in mechanical structures in order to
reduce the errors in eigenvalue analysis due to jeint modeling, The new modeling method uses
both a stiffness influence method and a condensation method to obtain the dynamic characteris-
tic matrix of the joint region. It also employs the displacement and reaction of finely modeled
finite element analysis in the calculation of stiffness influence coefficients. In order to check the
validity of the proposed method, natural frequencies and mode shapes of a simple structure with
a bolted joint are investigated by the proposed method and by experimenis. The eigenvalue
analysis using the proposed method shows more accurate results than that using rigid joints
modeling, when the natural frequencies are compared with the experimental results. In addition,
the differences between the natural frequencies obtained by the proposed method and those by
the rigid joints modeling are notable in the modes where the joint has ¢lastic deformation.
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1. Introduction

When we design highly precise or high speed
situctures such as machine teols, airplanes and
rotating machines, it 1s required to predict their
static and dynamic characteristics for the estima-
tion of their stability or performances. Particular-
ly it is important to analyze precisely the dynamic
characteristics of the structures such as natural
frequencies and mode shapes in order to control
vibration or positions of the structures for their
desired functions, But the accurate analysis is
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difficult to solve in case that joints exist in the
structure, since the characteristic parameters used
in the equations of motion are inaccurate.

The dynamic characteristics of complex struc-
tures can be analyzed by two approaches, namely
experimental approach using modal testing and
numerical approach using finite element analysis.
There may exist however some differences
between the results by experimental approach and
those by numerical approach. The errors of
numerical approach may be brought by the limi-
tation in number of finite elements or the simplifi-
cation of complex boundary conditions. Particu-
larly joint area or sliding surfaces gives large
error to dynamic analysis. Experimental
approach does not have those errors brought by
the foregoing incompleteness of model. but it may
have errors due to signal noise during data
processing. As experimental approach requires

the objective structures to be equipped, it is
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difficult to obtain the dynamic characteristics of
structures in a design stage and it is troublesome
to analyze configuration changes by experimental
approaches. It is therefore important to model
joints simply and accurately in order to analyze
large complex structures in a design stage.

The researches on joint characteristics have
been performed on the joints of machine tools,
and they are focused on the identification of the
static characteristics. On the other hand, for the
dynamic characteristics of complex structures,
methods which use both finite element analysis
and experimental modal analysis have been stud-
980s.
imental and semi-analytical methods have been

ied mainiy after Namely, semi-exper-
investigated to identify the joint parameters
through experiments after having modeled joints
with simple numerical models.

As a numerical method, Tanaka et al. (}1981)
analyzed a screw joint by modeling with axisym-
metric finite elements and treated preloads with
applving tension. Grosse and Mitchell (1990)
obtained nonlinear stiffness by modeling bolted
joints as axisymmetric, used heat displacements
for preloads, and considered the friction between
contact surfaces. Lee and Lee(1990) analyzed
structures with nonlinear joints by using sub-
structure synthesis method and describing func-
tion method in order to reduce the total degrees of
freedom. Moon et al. (1999} analyzed the non-
linear vibration of mechanical structures by using
substructure synthesis method and perturbation
method and they obtained the approximated solu-
tions in the nonlinear component and assembling
region by applying the perturbation method.
Yoon et al. (199%) analyzed the three dimen-
sional flow for the compression molding of
unidirectional polymeric composites with the slip
between a mold and a material by treating the
composite as an incompressible Newtonian fluid
and by a formulation technique of finite element
analysis.

As an experimental method, Tsai and Chou
(1988} proposed a method obtaining the joint
characteristics of single bolt joint from the fre-
quency response functions of tetal structure and
the frequency response functions of each sub-
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structure, where receptance was used as frequency
response function, and the mathematical model of
mass, damping, and stiffness matrices was not
used. Wang and Liou (199!} proposed a method
identifying the joint characteristics from the fre-
quency response functions of given structures.
Also they researched (o overcome the problems of
noise inevitable in frequency response functions
obtained by experiments.

A general dynamic modeling technique for
joints is required in order to predict the natural
frequencies and the natural modes of complex
structures before their production for the purpose
of motion control in design stage.

This paper aims to propose a new modeling
method for joints in & structure which can reduce
the errors of natural frequencies brought by joint
modeling. The new modeling method uses both a
stiffness influence coefficients (Lee et al,, 1995 and
Ko, 1996) and a condensation concept{Guyan,
1963) to obtain the dynamic characteristic matrix
of the joint region, First the joint area is discret-
ized finely with finite elements and some selected
reactions are calculated for assumed displace-
ments, Second the forces are employed for the
calculation of stiffness influence coefficients. Next
the condensed stiffness matrix of joint are calcu-
lated by using the stiffness influence matrix and
the condensation technique. Then a finite element
mode! of total structure which is easily soclvable
by practical numerical analysis is obtained.

A beam type structure with boelted joint is
selected as a benchmark example in order to
verify the foregoing method. The stiffness influen-
ce coelficients are investigated under various
condition of the stiffness of the contact elements,
the friction coefficients of the contact region, the
Then
dynamic characteristics of the overall systems are

magnitude of assumed displacement.

analyzed and compared with results of other
methods.

2. Condensation Using Stiffness
Influence Coefficients

2.1 Static condensation
Generally the finite element model of a given
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structure has many elements and nodes when the
structure is complex or large. Its eigenvalue prob-
lem becomes complicated and the efficiency of the
dynamic analysis may be deteriorative. So a
method is required to reduce the number of
degrees of freedom without changing the structur-
al preperties of the original structure and it is
called condensatton (Guyan, 1965).

In order to analyze the behavior of a structure,
we first obtain the following Eq. (1) from the
static telation between the force vector {F} and
the displacement vector {}

LEHut={F} (1
where [ K] is a stiffness matrix. In order to apply
static condensation methed, let the degrees of
freedom which are remained after condensation
process be the primary degrees of freedom (sub-
script p) and those eliminated temporarily during
condensation be the secondary degrees of freedom
(subscript 5). Assuming that external loads are
applied only to the primary degrees of freedom,
then Eq. (1) can be partitioned in the form

ke st =15 @

The stiffness matrix in Eq. (2) can be sim-
plified by the Gauss-Jordan elimination method,

I — T Us| 0

Lo & =) ®
yielding the relationships

{us}z[’f”uﬁ} (4)

[K{us}={F>) (5

where the matrix [T] is the transformation
matrix that represents the relation between the
displacement vector of the secondary degrees of
freedom {y,} and that of the primary degrees of
freedom {3} : and the matrix [ ] is the conden-
sed stiffness matrix in {y,}. The transformation
matrix and the condensed stiffness matrix are
respectively

[T]zﬁ[Kss]il[Ksp] (6)

[K1=[Kpp] = [Kps] [Kss] ' [Ksp] (D)

The relation between the condensed stiffness

matrix [K] and the overall stiffness matrix [ K]
is
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[K]=[TI"[K][T] (8}
where the transformation matrix [ 7] is obtained
from the relation between the primary degrees of
freedom and the overall degrees of freedom,

{a}=[T J{us} (9)

2,2 Stiffness influence coefficients and

static condensation

Equations (5) ~ (8) are the static relations
between the forces and the displacements for the
primary degrees of {reedom. And the overall
stiffness matrix [47] is obtained when total struc-
ture can be modeled with linear elements. If
mechanical joints are incladed in the structure
which is analyzed statically or dynamically by
finite element method, the joints should be finely
modeled in order to obtain accurate solutions, In
this case, the modeling work becomes complex
and the number of degrees of freedom becomes
large because the geometric shape is complex and
the joint interface has nonlinearity. As joints have
contacts of faces with faces, faces with lines, etc.,
they show different phenomena under compres-
sion and under tension as well. The joinis are
usually modeled with gap elements or contact
elements, but in case that such nonlinear elements
should be included, the degrees of freedom cannot
be reduced by a conventional static condensation.
By using the concept of stiffness influence coef-
ficients (Meirovitch, 1967), a condensed stiffness
matrix [ K] can be obtained. A stiffness influence
coefficient §,; is defined as the force given at x =
x; in order to generate unit displacement g;=1
only at x=x;.

In order to apply such concept of stiffness
influence coefficients, the primary degrees of free-
dom {z,} is selected in the overall degrees of
freedom {#} of total finite element model which
includes nonlinear elements. Let the displacement
of the f-th degree of freedom in the selected
primary degree of freedom be unity, then the
elements of {y,} are

=1
wps=0, for j=k, 7=1,2, .-, 5 {(10)
The loads corresponding to this displacement
constraints become the stiffness influence coef-
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ficients vector for £-th degree of freedom
{S}k=[f*‘m Fpg = Fpn}r (11)
Executing the process for each degree of firee-

dom gives the condensed stiffness matrix of total
structure

(ST=T{Sh {St2 - {S}] (12)
A static condensation method and the proposed
method using stiffness influence coefficients are
applied respectively t0o a mass-spring system
shown in Fig. 1. At first, the condensed stiffness
matrix is obtained by a common static condensa-
tion method. The overall stiffness matrix for the 3
degree-of-freedom system is

K+k, K 0 0 0
-K K+K -k 0 0
(K]=l 0  -K KK -K 0 [(13)
0 b K K+K K
0 0 0 -K KK

The overall displacement vector {y} is re-
presented by

{1y =Tx x2 23 x4 257 (14)

Here x, and x, are selected as the primary
degrees of freedom. The displacement vector
partitioned as the primary and the secondary
degrees of freedom becomes

()

{u}=1]x 2{{[:2;} {15)
X
Xs

7

N

/,
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The partitioned stiffness malrices become Eqgs.
{16y ~ (19).

K+EK, 0O

Korl =0 ) (16)
—_’Kz “Ka O :]

5| = 17

Kod=] o o (17)
[—K:, ©

[(Kopl=|—Ks —Ki (18)
L 0 &
“G-FKz 0 0

[Kss] = 0 Kt K, 0 {19)

0 0 K+ Ks

By using Eq. {7}, the condensed stiffness matrix
[ K] is obtained as

7 1 12
€1~ fxn axer) (20)
where
Al = KB G+ B9 & KoK (K o+ K
(Kit+ K») (Ks+ Ka)
AK12=AK 1= Igﬁﬁ
Ar22= Bl UG+ Ke) + KK (Kt Ka).

(Ka+ K) (Ko + Ke)

The stiffness influence matrix condensed by
using stiffness influence coefficients is obtained as
the following procedure, As the primary degrees
of freedom are x; and x,, the mass-spring system
in Fig. | can be represented again by the equiva-
lent mass-spring system as shown in Fig. 2. A
displacement vector for the stiffness influence
vector and the corresponding load vector are

AN\

Fig. 1 5 DOF mass-spring system

KK/ (Ki+Kz)

KsK4/(K3+Kq)

X4

KsKg/(K5+Ka)

Fig. 2 Equivalent condensed mass-spring system
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respectively,

X2l 1
L=l @
KK (st Ko + KK (KO + IG)
2 K+ Ka) (Ks+ K
e TR ew
A
K+ K,
Similarly the other pair are respectively
; 0
{;2}={]} (221)
4
KK
{Fz]: Kt K, (22b)
Fe Rl UG+ Koy + IGRG (KK
(Fa+ K (K1 K

Therefore the stiffness influence matrix [ 5]
becomes

ASI A8
[S]”quzl ASZZ} (23
where
4511 = BB U+ Ks) + Ky (i + Ko)
: (KOt G (Kt K)
. _ KK,
AS12=A821= JaNa

4§22 = R (K + KG) + Kb (FG+ )
(FG+ K (Ks -+ Ks)
The matrix [K] obtained from a common
static condensation and the stiffness influence
matrix [ S] by the influence method are the same.

2.3 Characteristic matrix of joints
The joint region of a structure shown in Fig. 3
is modeled finely as a finite element model con-

Joint Legion

Fig. 3 Definntion of the joint region

sidering clamping force, friction force, etc. If the
stiffness influence matrix is obtained for the
selected primary degrees of freedom by applying
the method mentioned above, the condensed stiff-
ness matrix is obtained for the reduced degrees of
freedom,
[K] TOTAL = [S] (24)
In the next step, the joint region is considered
to be divided into joint member A and joint
member B, then the condensed stiffness matrix
[K].4and [ K] are easily obtained for each joint
member A and B respectively by applying a
common static condensation. As the difference of
the condensed stiffness matrix in joined state
obtained by Eq. (24) and the condensed stiffness
matrices for each joint member only is obtained,
the condensed stiffness matrix of the joint itself
can be finally obtained by the expression
(Kla O
0 [Kls
So the characteristic matrix condensed to the
primary degrees of freedom including the effects

(R sorr =R romss | | es)

of ¢clamping forces or friction forces due (o con-
tact elements is obtained by Eq. (25). And if the
selected primary degrees of freedom are the same,
then we have the merit that the same stiffness
matrix is always obtained even though the joint
region ts defined in a different manner.

3. Analysis of a Beam-Type Structure
with Bolted Joint

3.1 Application model

In order to apply the proposed joint modeling
method, a beam-type structure is selected as a
benchmark example(see Fig. 4). Two beams
which have the same rectangular cross section {25
mm width X 5mm thickness) and 200 mm length
are joined with single M 6 bolt by lapping 40 mm
long. The 40 mm lapped region is defined as joint
region, which is modeled in detail by using a
general purpose finite element program. This
model is divided into 5 parts as the joint member
A (the upper plate), joint member B(the lower
plate), bolt, nut, and contact elements. The previ-
ous 4 paris are modeled by 3 dimensional siruc-
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Smm

160 mm 40mm 160 mm -~
on 1 E
T — £
i width = 25 mm
MEBOLT

Fig. 4 Configurations of beams with a bolted joint

(c) Bolt Nut

Fig. 5 Modeling of structural components

Fig. 6 Contact model of a bolt joint

tural solid elements as shown in Fig. 5. And the
joint(between joint members A and B, between
bolt head and joint member A, between nut and
joint member B, and between bolt and nut) is
modeled by using contact elements as shown in
Fig. 6. The numbers of elements are 304 for joint
member A, 304 for joint member B, 496 for bolt,
240 for nut, and 565 for contact elements and total
number of degrees of freedom is 6006.

3.2 Calculation of the stiffness influence
matrix

The stiffness of the contact elements is required

to be modeled for the contact elements in Fig. 6

e 6.4 100
3
>
wCJ
- 41 BO
X 63
'h-‘ e
@ . g
- 60 £
- -
g 52 2
2 - 40 %
E E;
] —o— Btifiness influence coelr. ] 29
é —=e— Parcentage(%)
- . \ _~ . 0
0.0 20 4.0 6.0 8.0 10, 12.

Normal stifiness { X 10° Nimm)

Fig. 7 Effects of stiffness of the contact clements

and its effect on the stiffness influence matrix is
considered. As this stiffness is varied from 1.0x
10N /e to 1.0 108N /g, the stiffness influ-
ence coefficient Sy;,; is calculated. The friction
coefficient and the displacement are set to 0.3 and
1.0 x 1073 mm, respectively. Figure 7 shows the
variation of the stiffness influence coefficients
according to the stiffness of ¢ontact elements.
Their deviations are less that 39 in the analysis
range, and they are affected relatively small by the
stiffness of the contact elements.

Modeling the contact elements also requires the
friction coefficients of the contact region, and the
stiffness influence coefficients may be dependent
on this friction coefhicients. The stiffness influence
coefficient Syz,; is obtained while the friction
coefficients are varied from 0.1 to 0.5. The stiff-
ness of the contact element and the given displace-
ment are set to 5.0x [°N/mm and 1.0x 1077
mm, tespectively. Figure 8 shows that the devia-
tion is less than 22 in the analysis range and the
effect of friction coefficients is very small.

In the calculation of the stiffness influence
coefficients, the reaction forces are obtained by
assuming an optional magnitude of displacement
on each degree of freedom. The reactions are then
converted into those corresponding to unit dis-
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placement. So the stiffness influence coefficient
Siz.z is evaluated while the displacements are
varied from 1.0x107%um to LOX 103 mm. At
this time the stiffness of the contact element and
the friction coefficient are set to 3.0 10O°N/mm
and 0.3, respectively. Figure 9 shows the stiffness
influence coefficients plotted against magnitude of
digplacement. The variation is about 109 in the
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Fig. 8 Effects of the friction coefficients
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Fig. 9 Effects of the initial displacements

Joint Stifinass K (X 10° N/m)
S - M (%Y &/ mo:m ;.

Noda 2

Noda 1

(a) MNodes 1,2 and 4

analysis range and it may be considered almost
same except for very small displacement.

In order to identify the change of the joint
characteristic matrix accerding to the definition
of the joint region, the case of modeling[model 1]
as shown in Fig. 4 and the case of modeling
[model 2] where joint region was defined 10 mm
longzer on each plate than in modet | are compar-
ed. Figure 10 shows that joint characteristic val-
ues for nodes 1, 2, 4 and 6, 7, 8 of model | and
model 2, They are in good agreements and the
differences are less than 0.1xI10°N/m. This
means that the same joint characteristic matrix is
obtained even though the joint region is defined
in a different manner.

3.3 Analysis results

Eigenvalue problem is solved by the proposed
modeling method and by the rigidly joined mode-
ling. In the rigidly joined modeling, finite element
analysis is performed under the assumption that
two beams are untted as solid.

The natural frequencies of the results are
compared with those of modal experiments in
Table 1. The proposed method shows more accur-
ate results than rigidly joined modeling. Also the
order of the fourth and the fifth mode are reversed
in the results of rigidly joined method. So the
rigidly joined modeling may not be good in this
case. Figures 11 and 12 show the lower 4 mode
shapes of the structure obtained by the proposed
modeling method and those by the modal experi-
ments, respeciively. As shown in two figures, the
mode shapes are in good agreement,

L oo res i e e o I Modgl 1
0 Modai 2

"

Joint Sliffness S (X 107 N/m)
O = N W LT B - BN ] o

Node §

Node 7
(b) Nodes 6, 7 and 8

Fig. 10 Joint characteristics of the model 1 and 2
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Table 1 Comparison of the natural frequencies (Hz)
Mode Experimental Proposed Rigidly joined
I {Ist bending} 204.3 210.0( +2.8%) 221.5(+8.4%)
2 {2nd bending) 562.6 573.3(+ 1.8%) 567.3(+0.8%)
3 (3rd bending) 1080.4 1122.8{+3.9%) 1183.8(49.5%)
4 (ist torsion) 1749.0 1761.1(+0.7%) 1860.2¢ 1 6.4%)
5 {4th bending) 1786.7 1768.6{—1.0%) 1840.8 (+3.0%)

RMS error 2.4%

RMS error 6.5%

Fig. 11

(c) 3rd mode

{a) Ist mode

{c} 3rd mode

(d) 4th mode

Mode shapes of the beam with a bolted joint
by proposed analysis

{b) 2nd mode

{d) 4th mode
Fig. 12 Mode shapes of the beam by modal testing

4. Conclusion

A modeling method is proposed in order 1o
reduce errors in eigenvalue analysis due to struc-
tural joints which make the modeling work com-
plex and increase the number of degrees of free-
dom in many cases. A beam lype structure with
bolted joint is selected as a benchmark example to
verify the proposed method by numericul analyses
and experiment. Summaries of the research are as
follows.

(1} If the primary degrees of freedom in joint
are the same, the same joint stiffness matrices are
obtained even though joint region is defined in a
different manner.

(2} The stitfness of the contact elements and
the friction coefficient exert a small effect on the
overall stiffness matrix.

(3) ln the natural frequency result by the
proposed method, the root mean square error and
the relative errors of many modes except for the
second are less than those of rigidly joined
modeling.

(4) Natural frequencies of a structure with
jomnt are lower than those without joint and the
effect of joint is different for each mode.

It is anticipated that this method can be ef-
fectively applied to substructure synthesis method
where the joint modeling is important.
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