1198 KSME International Journal, Vol 14 No. [l pp. 1198~ 1205, 2000

Robust Stability of a Two-Degrees-of-Freedom Servosystem with
Structured and Unstructured Uncertainties

Young-Bok Kim*
School of Transport Vehicle Engineering, Gyeongsang National University

A two-degrees-of-freedom servosystem for step-type reference signals has been proposed, in
which the integral compensation is effective only when there is a modeling error or a disturbance
input. This paper considers robust stability of the servosystem incorporating an observer against
both structured and unstructured uncertainties of the plant. A condition is obtained as a linear
matrix inequality, under which the servosystem is robustly stable independently of the gain of
the integral compensator. This result implies that we can tune the gain to achieve a desirable

transient response of the servosystem preserving robust stability. An example is presented to

demonstrate that under the robust stability condition, the transient response can be improved by

increasing the gain of the integral compensator.
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1. Introduction

In order to reject the steady-state tracking error
to siep-type reference signals, it is standard to
introduce integral compensators in servosystems.
However, if the mathematical model of the plant
is exact and there is no disturbance to the plant,
then the integral compensation is not necessary as
implied by the Internal Model Principle{Francis
and Wonham, 1975}, From this point of view, a
two-degrees—of-freedom (2ZDOF) servosystem has
been proposed (Fujisaki and lkeda, 1991, 1992,
Hagiwara et al., 1991) in the context of LQ
regulator theory, in which the integral compensa-
tion is effective only when there is & modeling
error or a nonzero disturbance. And, to maintain
the system performance when the plant parame-
ters are uncertain or varying, the auto-tuning
controller design problem has been considered
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(Cha et. al., 2000).

For the 2ZDOF servosystem, the authors have
presented a robust stability condition for the case
when the plant has structured uncertainty (Kim et
al., 1995, Kobayashi et al., 1995). The present
paper extends this condition to the case of both
structured and unstructured uncertainties. We
derive a robust stability condition in terms of a
linear matrix inequality, which is independent of
the gain of the integral compensator. This result
implies that we can tune the gain to achieve a
desirable transient response of the servosystem
preserving robust stability. We present an exam-
ple demonstrating that under the robust stability
condition, the transient response can be improved
by increasing the gain of the integral compen-
sator.

2. Two-Degrees-of-Freedom
Servosystem

Let us consider an uncertain plant described by

2 () ={Aet Astx (1) + (FBo+Bs) ulf)
F) =(Cot+ Cox (1)
uz(s) =N {(s)u(s)
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to(3) =) 1.(s), |4(5) <y
vg(s) =M {s) 20w (s)

v =3 ) +ys(1) (1)
where x (#), u (¢}, and y(¢) are the state, control
input, and controlled output, A, B, and G
represent the nominal plant, and A,, By and C;
The un-
structured uncertainty of the plant is additive and
written as M (s) 4(s) N (s). where, M (s), N{(s}
are known stable transfer functions which have

denote the structured uncertainties.

the following realizations

Enlt) =Anxn(t) + Bnitw (1)

Vs (1} = Critm{t) + Dnttw (1)

Falty=Anxa(t) + Baull)

ltz(f)=CnXH(t)+Dni{(t) (2)
where A4, And A, are stable matrices, We
assume that the controlled output y(¢) is measur-
able. In Eq. (1), for simplicity, we omitted distur-
bances to the plant, which doesn’t affect the stabil-
ity analysis of the resultant servosystem.

We require the plant to track a step-type refer-
ence signal y (#) with no error in the stcady-state.
For this, we assume that the pair (4, B, is
stabilizable, {(y, A,) is detectable, and

Ao By
det[
Ce 0
In order to cope with uncertainties of the plant,
we usually apply an integral compensator
wity=elt), e(ty=r () —y{t) 4

to the tracking error ¢ (¢). To synthesize a 2DOF
servosystem which is originally proposed using

]io (3)

o 7l
L]
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state feedback (Fujisaki and Ikeda, 1991, 1992,
Hagiwara et al,, 1991), we employ a full-order
observer for the nominal plant,

F)=AX (1) + Bow (1) — L{y ()
—Gx (1)} (%)
where [, 1s chosen so that A+ /., 1s a stable
matrix.

For the augmented system consisting of the
plant, the integral compensator and the observer,
the following control law has been proposed to
obtain a 2DOF servosystem (Fujisaki and Ikeda,
1991, 1992, Hagiwara et al, 1991, 1994, Kim et
al., 1995, Kobayashi et al., 1995) illustrated in
Fig. 1. Where, Fy is to be determined such that 4,
+ B, Fp is a stable matrix, and

wlt) =Fox () +Ior (£y +o(t)

vy =GoWz (1)
(B =F1& (1) +w(t) —{F5(0) + o (0)}

(6)
Ho={— Co{ Ao+ BoFo) "' Bo}™!
Fi=C(Ae+ B! n
The gain (G, is chosen so that it satisfies
FiByGo+ (FiByGy) T <0 (8)

and W/ is a positive definite matrix considered as
a tuning parameter. This control law ensures
stability of the servosystem if there is no uncer-
tainty in the plant.

In the 2DOF servosystem illustrated in Fig. 1, z
(¢)=0 and p(#)=0 hold if there is no uncer-
tainty in the plant, no disturbance to the plant,
and no estimation error, that is, £ (/)=x(s).

F |-
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N(s) ] 206) |—>{ 1105)
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o ¥ = (A +ADx+ (B + Bu ¥ _"b
;’ = (C0+C3)x +
F=Agi+ Bou— L{y— (7)) |

x
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Fig. 1

A two-degree-of-freedom servosystem incorporating an observer
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This implies that the nominal transient response
of the servosystem to the reference signal 3 (¢) is
determined only by the gain £} The effect of the
integral compensator appears only when uncer-
tainties of the plant, disturbances to the plant, or
estimation errors exist. The integral compensator
can be tuned by the gain 1§/, In this sense, we call
the control system of Fig. 1 a two-degrees—of
~freedom servosystem.

3. Robust Stability Independent of
Integral Compensator Gain

To examine the robust stability of the 2DOF
servosystem, we set » (1) =0, [ 5 (0) 4 (0) =0
and consider the system with the input 4, (#) and
output z,{#).

F(6) ={AAW) + A (W)} 7 (1) + Buw (8}

u)=C(W) £ (#) (9)
where J(s) is removed,
xn (1)
xm ()
)= x(1)
{£(8)—x(0}
z{1)
is chosen as the state,
An 0 B.Fy
0 An 0
z‘iu( VV) = 0 0 r’lo+ BoFo
0 —LCn 0
0 —(RL+1Cn b
B.F, B.G,W
0 0
BoFo By W (10)
Ao+ LE, 0

(FML+DCy FiBGoW

denotes the nominal part of the system matrix,

00 0
00 0
A-a(W) =100 Aa‘f‘BaFo

00 — (As+ LCs+ BsFv)
00 —(RL+DC;

0 0
0 0
B:Fy  BisGaW (1
- Ba‘FO - BBGIJ W
0 0
means the structured uncertain part, and
0
B
B= 0 (12)
LD
—(FL+1) Dy

CW)=(Cn 0 DoFy DuFo DLGoW].
From the small gain theorem, the servosystem
is stable if the system (9) is stable and us K
norm from g, (s) t0 #,(s) is less than 1/y.
Applying the bounded real lemma expressed by
a linear matrix inequality (LMI) (Gahinet and
Apkarian, 1994) with a positive definite matrix

FPu P Py P 0

Pl Py P Py 0
ﬁ(W)=P1T3‘PETa'R?3PS4O (]3)

Pl Pi PL Py O

¢ 0 0 0w

we obtain a condition for the robust stability of
the augmented system independent of .

Theorem For the structured uncertainties As
By C; and the upper bound y>0 of the
unstructured uncertginty A(s), 2DOF Servosys-
tem shown in Fig. I is robusidy stable indepen-
dently of the runing parameter W, if there exist
a positive definite matrix P(J) and a positive
number p such that the inequality

P A + A(DJHAWD + A,(D VB
{ yBTB (1)
wC (D)
yP(DB uCD
—ul 0 <0 (14}
0 —ul

holds.
Proof Equations (10) ~ (11} and (13) imply

AWy =AW W) =[AD + (D1 (W)
BOmY =] (W) P(1) (15)

where
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1000 0
0700 0
J(W)=|0070 0 (16)
000 ] 0
D000 W

Using these relations and the condition (14),
we obtain

PO AW +AT(W)YP (W)
[ yBTP (W)
uC (W)
yBOWYE pCOWY™) [J(W) 00
—ul 0 |=| o 10
0 —uf } 0 OJ
PHAD+AYD B
yBTB(I)
uC (I
yPUI) B 2xC(DT {J(W) 00
7 ¢ 0 70|<0
0 ;zl] 0 0[]
(17)

for any W >0. This inequality implies that the
system in Equation (9) is stable and its A, norm
from (s} 10 u.(s) is less thun 1/y. Then, we
conclude that the 2DOF servosystem of Fig. 1 is
robustly stable independently of W.

This result implies a significantly useful charac-
teristic of the 2DOF servosystem. If the plant
uncertainties are in the allowable set defined by
the condition (14), we can arbitrarily tune the
positive definite gain W preserving robust stabil-
ity. Note here that the objective of the integral
compensation is to reject the tracking error in the
steady state, and the effect of the integral compen-
sation appears through W as seen in Fig. 1. Thus,
we may make the transient response fast by
increasing W. Actually, a numerical example in
the next section shows that we can improve the
transient response by increasing W.

Lemma The robust stability condition de-
scribed in the previous theorem Is independent
of gain W. It means that we can arbitrarily
tune the positive definite gain W preserving
robust stability. in other word, high-gain com-
pensation is possible. This fact implies that for
the 2DOF servosystem in Fig. 1, there is no zeros
of the transfer function from the output io the
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input of gain W in the right half plan,
Proof See the Appendix.

4. A Numerical Example

We present an example to illustrate the change
of behaviors of the 2DOF servosystem shown in
Fig. 1, increasing the tuning parameter /. Let
the nominal matrices A, Ry Cp and the structur-
ed uncertainties A, B; C, of the plant be

M1 0 0
Ay=00 l}, B,=|0
130 -2 1
Co=[1 0 0]
[ 10 0
Aa: 00 ai |- Ba= bl
Lae O as b
Ce=[00 ¢] (18)

where g, go @3 b b2 ¢ are structured uncertain
elements. We assume that the unstructured uncer-
tainty is defined by

0.05
M(s) =5F10° Nis)=1 (19)
and y=1.
We consider a gaink, given by
F=[—-6.16 —6.29 —2.19] (20)

so that A,+ BoF, 1s stable, Then, the gains H;
and F, are calculated as

Ho=[3.16]
F=[—199 —1.33 —0.32]. 25
In addition, we choose an observer gain

—2.37

L_[—z.n} (22)
—2.12

so that A,-+ LC, is stable, and consider
Go=[0.32] (23)

so that (G, satisfies the condition (8).
Now, suppose that the structured uncertain
elements are

@1 =0.05, 3,==0.40, go=—0.50

5 =0.05, p=—0.083, ¢,=0.10, (24)
Then, we sce that the robust stability condition
(14) holds if we choose P, P, Fas, Fia Faq and
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{a) Controlled outputs

{b} Control inputs

Fig. 2 Step response( W =1}

e o e |

- T Y

(b) Control inputs

Fig. 3 Step response{ W=10)

P in P(W) of Eq. (13) as
Po=[1.51]

(b) Control inputs
Fig. 4 Step response{ W= 100)

Pr=[—0.02, 1.06, 1.21]
Pu=[—122 084 —081]

101 6.99 1.55

Pu=| 699 21.72 7.17

| 1.55 7.17 5.53
595466  6.66

Py=| 10.87 480 —14.28

[ —4.209.31 —4.46

T 86.69 0.64 —3.73

Pu=| 0646319 (941 (23)
| —3.73 19.41 34.20

and set 4 =0.13, Note here that f,,, P, Py and
P, are not needed, because the order A (g) is

zero.
Fig. 2—~4 show the transient responses of the

controlled output y(¢) and control input gz (¢}
corresponding to the cases of W=1, 10 and 100,
respectively. Here, we assume that the unstructur-
ed uncertain element is

_095+4 (26)

j(‘)): S+5

the reference signal is

y(£)=1, 20 (7
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and all the initial states are 0. The solid lines
show the perturbed behaviors, while the dashed
line is the nominal behavior in case there is no
uncertainty in the plant. We see that we can
achieve a fast tracking response by increasing T¥.

5. Concluding Remarks

In this paper, we have presented a robust stabil-
ity condition of the 2DOF servosystemn for the
case when the plant have structured and un-
structured uncertainty. We have derived a robust
stability condition in terms of a linear matrix
inequality, which is independent of the gain of the
integral compensator. This result implies that we
can tune the gain to achieve a desirable transient
response of the servosystem preserving robust
stability. We have presented an example demon-
strating that under the robust stability condition,
the transient response can be improved by increas-
ing the gain of the integral compensator.
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Appendix

Before proving the lemma, consider the state
equation of unstructured uncertainty A4(s) re-
presented by

Xa(t) = Asxalt) + Barez (#)
1= Caxa (i)

(AD)

Here if the stability condition (I4) is satisfied
then there exists a positive definite symmetric
matrix P, such that a Riccati inequality

_ I
Pafat ATPy< ——-PaBsBIPs *f;-ﬁzcg Ca

(A2)
holds. Using this fact, let us prove
[Pd 0 J[Ad Bdé(f)]
0 P(HILBC: AD
As B.C{DYT [P O
— - — 0 (A3
[Bcd A I P(I)}< A9

holds.
Proof : From the Eq. (14} and (A2), Eq.
(A3) is represented by
[PdAdJrAgPd 0 :|
0 PIOHAD AT P
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0
ﬁﬁ(f)EETP(n +pCT(1)C(1)]

+
| —

T PdBd][O JeC (Y]

1 T
+[0 J;C(z)]f{ﬁp"‘&]

0
0
m
+ v 5in i Ca 0
1 pons [ o]
A 0 v
Fel| o
+H-Ca 0 |
o ! r
_ TﬂPdBd ‘/‘L—[PdBd
—JuCTD L~ VuCT (1}
[ e[ e T
- 7 v (A4)
Y PFnEBEIlLBIE
_J;TPU)B m (1YB

This result implies that Eq. {A3) is negative
definite.

{ Proof of lemma] For the 2DOF servosys-
tem of Fig. 1, consider the following representa-
tion to derive the transfer function(from the
output to the input of W) :

An 0 B:Fy
0 An 0
A=| 0 0 Aot As+{(Bo+ B) Fo
0 —LCn = (Ast BeFo+LCy)
0 ~(RL+DCn —{RL+DCs
BiFo 0
0 0

(Bo+Bs)Fv 0
(FRL+DC 0O

Young-Bok Kim

BxG
0
E= (Bu+B3)G
—BsG
FiB.G
C=[00001]] (A3)

Then the transfer function is given by (s
— A)~'B. And the zeros of this transfer function
are the values of s such that

sf E]

mo=[" " (A6)

is nonsingular. From simple calculation, the fact
that f7(s) is nonsingular is equivalent to

An—sI 0
0 An—sl
=] 0 0
0 —LCn
¢ —(RAL+I)Cn
Bakq B:Fy
0 ]
At As+(BotBs) Fy—s (Byt Ba) Fo

- (Aa+ BsFo+ LC;) Au—BaFo‘i'LCo—SI
—(FL+DCs (RL+D G
Baln
0
(Bo+ Bs) Go
—BsGo
FiB(a

is nonsingular. Here, let us describe J7(s) as
follows :

ﬁ(s) :ﬁr+ﬁi(5)

An 0 Bo.Fy
0 An 0
=| 0 0 Aot As+H{Bot+Bs) Fo
0 —LCn —(As+BsFyo+ LCs)
0 —(RL+NCn  —(RL+DCs
BaFo B.Go
0 0
(Bot+Bs)Fo (Bo+Ba) &
AoiBSFD-‘l_LCO _BSGD
{(FL+D)GCo FiByGy
—sf O 0 g 0
0 —sJ 0 0 O
+¢ 0 0 —sI 0 0 (A7)
0 0 0 —4/0
0 0 0 0 0
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and define a positive definite matrix
P: 0 ]

0 P(I)

From these facts, the following representation is

obtained ;

P =| (A8)

PN ()P
=PI+ 7P

Res/ 0 0 0 0

0 ResJ 0 0 0

_2P(ND| 0 0 Resg 0 ©

0 0 0 ResJO

0 0 0 0 0

(A9)

where * represents the conjugate transpose of a
matrix.
In the Eq. (A9),

B+ 7R (D)
equals the Eq. (A3). If the robust stability condi-
tion (14) is satisfied then

B+ HIP(I) <0
holds.

Here, il we assume that there exists a negative s
such that // (s) is nonsingular, then this assump-
tion means that the left term of Eq. (A9) is
positive. But, if we consider that the robust stabil-
ity condition (14) holds, it is necessary that the
right term of Eq. {A9) is negative. Therefore,
under the robust stability condition, we can see
that the real parts of all zeros of the tramsfer
function (from the output to the input of tuning
gain W) are negative values,



