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Development of Global Function Approximations for Desgin
Optimization Using Evolutionary Fuzzy Modeling

Seungjin Kim, Jongsoo Lee*
Department of Mechanical Engineering, Yonsei University

This paper introduces the application of evolutionary fuzzy modeling (EFM) in constructing

global function approximations to subsequent use in non-gradient based optimization strategies.

The fuzzy logic is employed for express the relationship between input and output training

patterns in form of linguistic fuzzy rules. EFM is used to determine the optimal values of
membership function parameters by adapting fuzzy rules available. In the study, genetic
algorithms (GA’s) treat a set of membership function parameters as design variables and evolve
them until the mean square error between defuzzified outputs and actual target values are
minimized. We also discuss the enhanced accuracy of function approximations, comparing with
traditional response surface methods by using polynomial interpolation and backpropagation
neural networks in its ability to handle the typical benchmark problems.
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1. Introduction

Emerging computation strategies such as
genetic algorithms (GA’s} and simulated annea-
ling (SA) have found increased use in the prob-
lems of engineering design optimization. In many
practical design problems, the design space may
contain continuous, discrete and integer design
variables, Furthermore, it may be multimodal, or
even disjointed, making it very difficult to identify
the global optimum. So the GA based optimiza-
tion strategy has been developed to be especially
effective (Hajela and Lee, 1993). This method
does not require gradient information, and due to
a global nature of the search in which design data
from widely dispersed points are used to make
design modifications, has the increased probabil-

ity of locating the global optimum. However, one
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of the major drawbacks in genetic algorithms is
the significant increase in computational resource
requirements when the underlying analysis is -
inherently nonlinear, and the design problem is
characterized by a large number of design vari-
ables and constraints. In such cases, it is required
that the design optimization algorithm be used in
conjunction with an approximate analysis.
Recently there have been considerable advances
in the use of approximate analysis methods in
engineering design Function
approximations are useful in modeling the behav-
ior of engineering systems that cannot be readily

optimization.

defined by analytical formulattons. Recently, with
a growing interest of manufacturing considera-
tions in the early stage of integrated design, a
technique for modeling manufacturing processes
typically characterized by inadequate or vague
has become necessitated. Unlike
gradient based methods, the search in GA pro-

information,

gresses from a multiple set of designs to another
set, incorporating information from all points to
establish the direction of move. While such an
approach offers the increased probability of locai-
ing the globul optimum, the computational cost is
high due to multiple design point evaluations. A
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Taylor series type approximation scheme is unac-
ceptable in GA’s as multiple approximations
must be constructed. Furthermore, the integrity of
these approximations is questionable, as the
method does not impose explicit limits on design
changes during iterative process. Response sur-
fuce methods (RSM) based on polynomial func-
tions and/or neural networks have been studied
in the context of global function approximations
(Carpenter and Barthelemy, 1993; Hajela and
Berke, 1992). RSM is extremely potent in those
problems where the combination of numerical
and experimental data is used to construct an
approximation model. A problem assoctated with
the use of RSM is that when using polynomial
interpolation, it becomes difficult to determine the
best order of the polynomial, and the amount and
distribution of its terms that must be used in
developing a suitable response surface within an
acceptable range of approximation accuracy. A
similar situation exists in the use of neural net-
works; it is also difficult to establish the architec-
ture of the network as indicated by the number of
hidden layers of neurons, the number of neurons
in each layer.
The present paper discusses the efficient
method of developing evolutionary fuzzy model-
ing (EFM) based global function approximation
tools for subsequent use in design optimization,
where global search strategies such as genetic
algorithms are used. EFM is an optimization
process for determining the types of membership
functions and their parameters of interest by
adapting fuzzy rules, where the optimization
process is conducted by evolutionary computing
methods such as genetic algorithms (Satyadas and
KrishnaKumar, 1994; Cordon and Herrera, 1995)
as well. In practice, it is also found that the small
(or insufficient) amount of deterministic data is
provided, and most of analyses or experimental
data are given in form of heuristic or linguistic
information. When the training data is the type of
fuzzy rules, we obtain a function approximation
model by determining the optimal parameters for
input and output membership functions describ-
ing the conditions and actions in fuzzy rules,
respectively. In EFM., GA’s will treat a set of
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membership function parameters as design vari-
ables and evolve them until the error between
predicted outputs and actual target values are
minimized. In the present study, a global function
approximation with EFM approach is implement-
ed and compared with the conventional RSM by
both artificial neural networks and polynomials
to see its generalization capability. Fuzzy logic
and neural networks are generally categorized as
soft computing techniques where global function
approximation tools using machine learning para-
digms were explored (Hajela and Lee, 1997). In
the paper we employ simple response functions
with single-input and single-output to verify the
proposed approach in modeling nonlinear and
multimodal design problem. In the subsequent
sections we will briefty discuss the theoretical
aspects in fuzzy system and the evolutionary
strategy for developing global function approxi-
mations.

2. Fuzzy System

The fuzzy inference system (FIS) is a comput-
ing framework based on the traditional concepts
of fuzzy set theory, fuzzy if-then rules and fuzzy
reasoning (Jang, Sun and Mizutani, 1997). The
fuzzy logic and fuzzy inference system have been
widely applied in control systems design (Hines,
1997), and have received recent attention in
multiobjective optimization of structural and
mechanical systems (Rao, 1987; Dhingra and
Rao, 1992). The basic structure of FI1S has three
components; fuzzy rules are expressed by linguis-
tic rule base information, fuzzy membership func-
tions are introduced to represent a set of fuzzy
rules, and a reasoning mechanism performs the
inference procedure upon the rules and given facts
to derive a reasonable output or conclusion.

Using fuzzy sets, the linguistically expressed
rules can be defined for a given set of input and
output variables. The fuzzy rules use the condi-
tional statements of if-then rules. For example, a
standard fuzzy if-then rule assumes the following

form:

If x is A, then y is B. (1
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In the above, A and B are the linguistic values
of the input variable x and the output variable v,
respectively. The if-part of the rule “x is A™ is
called the antecedent or condition, and the then-
part of the rule "y is B” is called the conseguent
or action. In the case of hoolean logic, if the
antecedent part of the if-then rule is true, then the
consequent part of the if-then rule is also true.
However, the fuzzy if-then rules do not operate in
the same manner since they use the fuzzy state-
ment. Instead, in fuzzy if-then rules, if the ante-
cedent is partially true to some degree, then the
consequent is also partially true to the same
degree. If-then rules can also have more than one
part in both the antecedent and consequent. In
this case, all antecedent parts are calculated simul-
taneously and generate a single value by using the
fogical operators. This results from the antecedent
part and affects all consequents equally by an
implication function.

The definition of a fuzzy set is the simple
extension of the classical set definition where the
characteristic function has any values between 0
and 1. From the definition of a fuzzy set, for
example, the linguistic values of input variable in
the antecedent in Eq. (I) could be expressed as a
set of ordered pairs:

A={(x, s () | xe X} ()

where, y, (x) is called the membership function
for the fuzzy set A. The membership function can
be selected as any arbitrary curve according to
one’s subjective perception based on the behavior
of a function. We can introduce such membership
function to the consequent as well. Notice that the
basic FIS can take either fuzzy or crisp inputs,
while the outputs it produces are mostly fuzzy
sets. It is necessary to have a crisp output, espe-
cially in a case where FIS is used as a decision-
making device. Therefore, a method of generating
an aggregated decision value, referred to as defuz-
zification is needed to extract a crisp value best
representing a fuzzy set. The procedure for fuzzy
rule aggregation and subsequent defuzzification is
summarized for completeness.

Consider a case where a number of fuzzy rules
are made of more than one part in the antecedent

Fig. 1 Fuzzy inference system

and a single part in the consequent. For each of
fuzzy rules, all antecedent parts and are calculated
simultaneously to generate a single value by using
the logical operators; this process results from the
antecedent parts and the then affects the conse-
quent equally by an implication function. The
defuzzification is then performed based on the
multiply aggregated values of output fuzzy sets
from each of fuzzy rules. When the maximum
method as an implementation of aggregation
process is considered for example, the order in
which the rules are aggregated does not matter for
more than two output fuzzy sets due to its com-
mutative characteristic in aggregation. The aggre-
gation of two output fuzzy sets returned by the
implication process generates another fuzzy set. In
order to extract useful information from newly
aggregated fuzzy set, it must be defuzzified to
obtain a single value as well. Although the con-
version of a fuzzy set into a single crisp value is
available in several ways, the present study adopt-
ed the centroid method to calculate the center of
a region generated by all aggregated output fuzzy
sets, FIS with a crisp output is shown in Fig. 1,
where a basic FIS transforms an aggregated out-
put fuzzy set into a single crisp value,

3. Evolutionary Fuzzy Modeling

Evolutionary fuzzy modeling (EFM) employs
evolutionary algorithms to evolve the fuzzy model
of a nonlinear and/or multimodal system. The
general approach for using a parameter optimiza-
tion technique for fuzzy modeling has been used
to tune the parameters of predefined rules. In the
study, genetic algorithms are used to obtain near-
optimum fuzzy membership parameters and fuzzy
rule structure through an iterative procedure
using appropriate performance index and avail-
able system information. Building an optimal and
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robust fuzzy model is critical to the performance
of the fuzzy logic. In order to tune a fuzzy model,
the EFM approach is introduced in the present

study, Even though the type of membership func-

tions and the number of rules can vary during the
GA evolution, the only tuning parameters in this
work are membership parameters used to define
the shape of each membership function. Notice
that the additional consideration of selecting the
type of membership functions produces more
intelligent EFM framework and, resulting in the
increase in the computational costs during the
GA based optimization process. GA's treat a set
of membership function parameters as design
variables and evolve them until the error between
defuzzified outputs and actual target values are
minimized. The GA based optimization statement
for optimal tuning of a model with s number of
inputs and # number of outputs can be written as
follows:
s J

minimize F=?j§ {v;—£)F (3)
ri<a<xf, i=lLom

The objective function was considered as the
mean square error between the response predicted
output, y; and the actual output, 7. It should be
noted that actual output is obtained from exact
analyses. while the predicted output is generated
by fuzzy membership functions and their parame-
ters. The design variables in this approach are
membership function parameters, limited by
proper lower and upper bounds; each design
variable in the EFM approach represents a
parameter for use in defining the membership
function. The salution for this optimization prob-
lem is the set of membership parameters generat-
ing the most accurate approximation. The next
sectton introduces the benchmark functions to be
approximated by EFM; they are typical in terms

Inputsxd o ——— - Outputs(y;)
i
T M
i Fuzzy Inference System s
L]
[ —
Determining
Membership  |function parametery
Genetie Afgorithms

F=Q/m)E(yn-4P

Fig. 2 GA based EFM for function approximations
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of function modality. The general procedure for
EFM based optimal membership parameter
extraction is shown in Fig. 2.

4. Numerical Examples

The present study explores two types of func-
tions to verify the proposed strategy in response
approximations. The first case is a balf-sine wave,
a simple harmonic function that has the unimo-
dality in function response. The second is a
multimodal function, typically obtained through
a vibration analysis of mechanical systems; this
may have a higher degree of complexity in func-
tion approximations.

4.1 Unimodal function

Consider the following half-sine wave equa-
tion that behaves in a unimodal and continuous
manner over the entire design space:

y=sin{f), 0<f=<x (4)

Fuzzy model requires some basic knowledge
about the function to be approximated before
initiglizing the model, For the fuzzy logic model
working properly, a set of fuzzy rules, and the
type and number of membership functions for
mput and output variables should be defined
based on the original function. Assuming that the
minimal knowledge about the half-sine wave
function is available, the following three rules can
be generated to construct the proper membership

functions:
Rule I If # is small, then y is small.
Rule 2 If # is medium, then v is large.
Rule 3 If @ is large, then y is small.

[n this function approximation, three Gaussian
(small, medium, large) and two triangular
{small, large) membership functions can be used
to describe variations of input and output values,
respectively;

Haussian (5:0,0) = ¢ HFT (5)
0, x<a

(x—at/(B—a), e<x<g

(r—x}/{y=8). B<x<y
0, YEX

(6)

Herianguiar (x,a,,& 7) =
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where, ¢ and g determine the center and width
of Gaussian membership function, respectively,
and the parameters {g, 4. y) define the x coordi-
nates of three corners of the triangular member-
ship function. It should be reminded that these
parameters are treated as design variables in EFM
approach.

4.2 Multimodal function

The second function to be approximated is
more complex in modality than a simple har-
monic function. The present study adopted the
following typical equation:

y=5""¥gin(2xt), 0.0< ¢ <4.0 (N

Multimodality of Eq. (7) requires at least ten
rules to express the function behavior over the
design space as follows:

Rule 1 If t is Zero, then y is Zero.

Rule 2 If t is VeryVerySmall, then y is Positively-
Creat.

Rule 3 1f t is VerySmall, then y is NegativelyGreat.

Rule 4 If t is Small, then y is PositivelyBig.

Rule 5 1f t 1s Medium, then y is NegativelyBig.

Rule 6 {f 1 is Big, then y is PositvelyMedium.

Rule 7 If t is Great, then y is NegativelyMedium,

Rule 8 If t is VervGreat, then y is PositivelySmall,

Rule 9 If v is VeryVeryGreat, then vy is NegativelyS-
mall.

Rule [0 If t is VeryVeryVeryGreat, then y is Zero,

This multimodal function can also be approx-
imated using Gaussian and triangular member-
ship functions in Eq. (5} and (6) to describe
antecedents and consequents, respectively,

5. Results and Discussion

EFM based approximate analysis was simulat-
ed for a half-sine wave function, where there are
two cases in numerical experiments, In the first
case, only a small number of data set is provided
for training to effectively approximate the output
for the entire range of input. Three training
patterns are selected at three distinct positions of
interest, @=0, /2, and 7z, which covers the entire
design space; these training patierns exactly match
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Table 1 Lower and upper bounds on membership
function parameters

Unimodal Response | Multimodal Response

I |
Parameter N L U i
bound | bound Precision bound jbound RN
Input | oo | oo | 40| ool
Membership
Function ! L 0.0¢ 09 19 00

2 ~081 18 [ 000 |-60] 80 | 00!

Output _‘__
Merbership L s -0&| 13 D03 601 80 0.0
Funetion 1
Y -08 18 [ 001 |60 80 { O
I

membarship degree
s & s o
[~

oy

15
& lradian)

{a) input membership function

Bl 05 i} ns 1 15 2

(P) Qutput membership function

Fig. 3 Optimized membership function for
unimodal response (3 training data)

for each of fuzzy rule described in Eq. (4).
Figures 3(a) and 3(b) show the optimized mem-
bership functions for input (condition) and out-
put (action) fuzzy rules, respectively. Lower and
upper bounds on membership parameters for use
in GA evolution are given in Table 1. Note that
Gaussian input membership function values are
as close as 1.0 around =0, z/2, and 7, while
output triangular membership function wvalues
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—  attul

= EFM
pelynomiali2nd order)

y-out

[1} 05 1 15 2 25 3 35
#iradian)

Fig. 4 Unimodal response (3 training data}

have their crisp values within the prescribed
bounds on membership parameters. Function
approximations are generatized using these opti-
mal values of membership function parameters.
Figure 4 shows approximated results obtained
from EFM and polynomial interpolation; the 2nd
order polynomial was selected according to the
nature of response characterisiics in actual out-
put. This result shows that the polynomial is more
effective in global approximation than that in
EFM. One can deduce the way of increasing the
approximation accuracy by looking at the mem-
bership function behavior; the optimized input
membership function in Fig. 3(a) has the crisp
values around §=90, z/2, and , as described
before. However, the crisp values for the output
membership function in Fig. 3{(b} do not exactly
match with 0.0 and 1.0, which correspond to
actual minimum and maximum values of the half
sine wave, respectively. Since the fuzzy logic can
effectively take advantage of the user’s knowledge,
a more uniformly distributed set of membership
functions are generated as shown in Fig. 5. This
does not require any optimization process for the
fuzzy model since all membership parameters are
specified by the user’s subjective understanding of
the function behavior over the design space. The
fuzzy logic approximation based on the user’s
knowledge is shown in Fig. 6, where the fuzzy
logic model generated by the non-optimized user’
s knowledge produced worse in approximation
than even the tuned model with only three train-
ing patterns. Nevertheless, the model may still
provide a useful approximation tool in a situation
where no analytical formulation is available.
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membership degree

0 PEY 1 15 F 25 3
4 {radian}

{a) loput membership function

. T

i3
/

B 05 ] o5 1 15 2
y-out

{b) Qutput membership function
Fig. 5 Knowledge based membership functions for
unimodal response

0 83 1 15
¢ ({radien)

Fig. 6 Unimodal response {fuzzy togic only)

Now, we need consider the second case of
increasing the number of training patterns in
function approximation of a half sine wave. A set
of uniformly distributed 20 patterns were em-
ployed for both the
approachs. The optimized membership functions
and approximated results using 20 tratning data
are displayed in Fig. 7 and 8, respectively. The
use of more training data in EFM approach
generates the approximate result as close as the

EFM and polynomial
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Table 2 Comparision of approximation perfor-
mance for unimodal response

Traing Data Testing Error (95)

Modle type 3 20
EFM 5.95080 1.3596
Polynomial 2.89046 1.6402
Fuzzy logic 9.70524 N/A

mambership degroo
o o o

[ 05 1

15
& [radian)

(a) Input membership function

— — high 7

1 05 B s 1 15 2
wou

(b) Output membership function
Fig. 7 Optimized membership f{unctions for
unimodal response (20 training data)

_— actual
— — Ef
12 --==- palysomid@nd order)
1
08
3
g
o8
04
02
0
o 05 1 15 2 25 3 35
#(radian)

Fig. 8 Unimodal response (20 training data})

exact function value. The overall comparison over

—  aclual

s EFM
1 ] ===+~ polynomisl(Zth erdery

0 05 1 15 2 15 k] 35 i
t{radian}

Fig. 9 Multimodal response (10 training data)

5
1} ns 1 15 2 25 k| 35 4
t{vachan}

Fig. 10 Multimodal response (20 training data)

i |
EFI

M
© polynomialiBth oedwr}

0 [ [ 3 2 25 3 a5 [
{radian)

Fig. 11 Muitimodal response (40 training data}
this unimodal function is also shown in Table 2
in terms of approximation strategy and the num-
ber of training data. The evolutiopary fuzzy
modeling approach has shown the marginally
comparable approximation results compared to
the polynomial interpolation in a case where the
function to be approximated is of the type
unimodal that is much simpler in modeling.
Consider a different type of the function with
multimodality as shown in Equation (7); this
function requires 10 fuzzy rules to express the
membership functions, resulting in at least 10
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—  atiia’

EFM
-1 S palynomial(Sth arder)

[ 0s 1 15 25 3 as 4

2
t(radian)

Fig. 12 Mutimodal response (80 training data)

membership degree

t {radsan)

(2) Inpw membership function

membership degree

O

(b} Output membership function
Fig. 13 Optimized membership functions for

multimodal response (80 training data)

training patterns to find optimal membership
parameters. Based on the fact that the increase in
the number of training data will contribute the
increase in the accuracy of EFM based approxi-
mation, the multimodal function problem
employs four different cases in term of the number
of training data. Lower and upper bounds on
membership parameters for multimodal response
are also shown in Table |. Approximation results

using the different number of training data are

Hidden
Layer

Input
Layer

Output
Layer

Fig. 14 Backpropagation neural network

—  actual
— —  newal natwarks

y-out

a os 1 18 2 25 3 3s 4
t{radian)

Fig. 15 Use of neural neiworks {300 training data)

depicted in Figs. 9 to 12; the 9th order of
polynomial was used to compare with EFM
approach. The optimized membership functions
for the multimodal response are also shown in
Fig. 13. The optimal values of membership
parameters are placed near the crisp values of
interest. These numerical experiments indicate
that EFM approach is especially efficient in a
case where the response to be approximated is
maultimedal, and the traditional response surface
method (RSM) based on the polynomial function
has difficulty in global approximation over the
entire design space. EFM with 40 training pat-
terns agree well with the exact function, while the
9th order of polynomial interpolation do not
foltlow any of modality regardless of the number
of training data.

The benefit of EFM approach is more evident
when compared to artificial neural networks
based RSM {Lee and Hajela, 1996). A number of
backpropagation neural network (BPN) architec-
tures (Hajela and Lee, 1996) were generalized to
approximate the multimodal function with one
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Table 3 Comparision of Approximation Per-
formance for Multiimodal Response

Traing Data Testing Error (%)
Order o
Polynomial 10 20 40 80
6th 135.70 | 110.63 | 105.43 | 104.11
Tth 9560 | 92.88| 99.33| 91.85
8th 90.12| 87.77| 83.54| 82,79
9th B8.06| 81.83| 80.11| 67.88
EFM 23.19| 13.31| 8.620| 5.741

neuron in the input and output layers, and a
multiple number of neurons in one hidden layer,
referred to as 1-H-1 architecture as shown in Fig.
14. Approximated result by BPN with 300 train-
ing data and 1-8-1 architecture is shown in Fig.
15, wherein the approximation performance is
comparable to the exact function and EFM
approach around first two modalities only.
Approximation results obtained from different
approaches are shown in Table 3. EFM approach
with a smaller number of training data provides
the better performance in global function approxi-
mation over the entire design space.

6. Closing Remarks

The proposed paper describes the application
of evoluttonary fuzzy modeling in global function
approximations for use in design optimization. In
this approach, relationship between input vari-
ables and output responses is expressed by lin-
guistically expressed fuzzy rules. The genetic
algorithm based optimization has been conducted
to determine the optimal membership parameters,
minimizing the variance of actual outputs and
defuzzified outputs obtained from fuzzy inference
system. Especially, in a case where no data or
methematical formulation is available, fuzzy logic
a convenieni way to Incorporate
designer’s knowledge into modeling the problem.

provides

Function approximations by evolutionary fuzzy
modeling have shown their remarkable perfor-
mance when a response function to be approx-
imated over the entire design space is nonconvex,
and multimodal. The optimization procedure in

fuzzy system increase the approximation accuracy
with the smaller number of training data over the
interpolation based approximation tools such as
polynomials and neural networks. Continuing
studies are being extended into large dimen-
sionality design problems. Research pertinent to
such problems modifies the fuzzy rules by increas-
ing the portion of condition paris and/or action
parts according to the number of design variables
and response functions of interest. Generalization
of FEM based approach in terms of the number
of fuzzy rules and membership functions are
discussed in greater details in a separate publica-
tion.
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