FIXED POINTS OF A CERTAIN CLASS OF ASYMPTOTICALLY REGULAR MAPPINGS

JONG SOO JUNG, BALWANT SINGH THAKUR, AND DAYA RAM SAHU

ABSTRACT. In this paper, we study in Banach spaces the existence of fixed points of asymptotically regular mapping \(T \) satisfying: for each \(x, y \) in the domain and for \(n = 1, 2, \cdots \),

\[
\|T^nx - T^ny\| \leq a_n\|x - y\| + b_n(\|x - T^nx\| + \|y - T^ny\|) + c_n(\|x - T^nx\| + \|y - T^nx\|),
\]

where \(a_n, b_n, c_n \) are nonnegative constants satisfying certain conditions. We also establish some fixed point theorems for these mappings in a Hilbert space, in \(L^p \) spaces, in Hardy spaces \(H^p \), and in Sobolev spaces \(H^{k,p} \) for \(1 < p < \infty \) and \(k \geq 0 \). We extend results from papers [10], [11], and others.

1. Introduction and preliminaries

Let \(E \) be a real Banach space with norm \(\| \cdot \| \) and let \(K \) be a nonempty subset of \(E \). A mapping \(T : E \to E \) is said to be asymptotically regular \([2] \) if \(\lim_{n \to \infty} \|T^{n+1}x - T^nx\| = 0 \) for all \(x \in E \). It is well known that if \(T \) is nonexpansive, then \(T_t = t \cdot I + (1 - t) \cdot T \) is asymptotically regular for all \(0 < t < 1 \) (cf. [9]).

Lin [14] constructed an asymptotically regular Lipschitzian mapping acting on a weakly compact subset of \(l^2 \) which has no fixed point. Górnicki gave the sufficient condition for the existence of fixed points

Received July 9, 1999.

2000 Mathematics Subject Classification: 47H10.

Key words and phrases: normal structure, \(p \)-uniformly convex Banach space, asymptotic regularity, fixed points.

This paper was supported by the Dong-A University Research Fund, in 1999. The first author also wishes to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998, Project No. 1998-015-D00020.

In this paper, we extend all the above results for the class of mappings whose nth iterate T^n satisfy

$$\|T^n x - T^n y\| \leq a_n \|x - y\| + b_n \left(\|x - T^n x\| + \|y - T^n y\|\right)$$
$$+ c_n \left(\|x - T^n y\| + \|y - T^n x\|\right)$$

(1)

for each $x, y \in K$ and $n = 1, 2, \cdots$, where a_n, b_n, c_n are the nonnegative constants such that there exists an integer n_0 satisfying $b_n + c_n < 1$ for all $n \geq n_0$.

This class of mappings are more general than nonexpansive mappings. Also by taking $b_n = c_n = 0$, it will be seen that this class of mappings are more general than asymptotically nonexpansive mappings defined by Goebel and Kirk [8].

The normal structure coefficient $N(E)$ (cf. Bynum [3]) of E is the number:

$$N(E) = \inf \left\{ \frac{\text{diam} K}{r_K(K)} : K \text{ is a bounded convex subset of } E \right\},$$

consisting of more than one point,

where $\text{diam} K = \sup \{\|x - y\| : x, y \in K\}$ is the diameter of K and $r_K(K) = \inf_{x \in K} \{\sup_{y \in K} \|x - y\|\}$ is the Chebyshev radius of K relative to itself. E is said to have uniformly normal structure if $N(E) > 1$. It is known that a uniformly convex Banach space has uniformly normal structure (cf. Danes [5]) and for a Hilbert space H, $N(H) = \sqrt{2}$. Recently, Pichugov [16] (cf. Prus [17]) calculated that

$$N(L^p) = \min \{2^{\frac{1}{p}}, 2^{\frac{p-1}{p}}\}, \ 1 < p < \infty.$$

Some estimates for normal structure coefficients in other Banach spaces may be found in [18].

Let $p > 1$ and denote by λ the number in $[0, 1]$ and by $W_p(\lambda)$ the function $\lambda \cdot (1 - \lambda)^p + \lambda^p \cdot (1 - \lambda)$.

730
Asymptotically regular mappings

The functional \(\| \cdot \|^p \) is said to be uniformly convex (cf. Zalinescu [23]) on the Banach space \(E \) if there exists a positive constant \(c_p \) such that for all \(\lambda \in [0, 1] \) and \(x, y \in E \) the following inequality holds:

\[
(2) \quad \| \lambda x + (1 - \lambda) y \|^p \leq \lambda \| x \|^p + (1 - \lambda) \| y \|^p - W_p(\lambda) \cdot c_p \cdot \| x - y \|^p.
\]

Xu [22] proved that the functional \(\| \cdot \|^p \) is uniformly convex on the whole Banach space \(E \) if and only if \(E \) is \(p \)-uniformly convex, i.e., there exists a constant \(c > 0 \) such that the modulus of convexity (see [9])

\[
\delta_E(\varepsilon) \geq c \cdot \varepsilon^p
\]

for all \(0 \leq \varepsilon \leq 2 \).

2. Main results

Before presenting our main result, we need following lemmas.

Lemma 1 ([22]). Let \(p > 1 \) and let \(E \) be a \(p \)-uniformly convex Banach space, \(K \) a nonempty closed convex subset of \(E \) and \(\{ x_n \} \subset E \) a bounded sequence. Then there exists a unique point \(z \) in \(K \) such that

\[
(3) \quad \limsup_{n \to \infty} \| x_n - z \|^p \leq \limsup_{n \to \infty} \| x_n - x \|^p - c_p \cdot \| x - z \|^p
\]

for every \(x \) in \(K \), where \(c_p \) is the constant given in (2).

Lemma 2 ([11]). Let \(K \) be a nonempty closed convex subset of a Banach space \(E \) and \(\{ n_i \} \) an increasing sequence of natural numbers. Assume that \(T : K \to K \) is an asymptotically regular mapping such that for some \(m \in \mathbb{N} \), \(T^m \) is continuous. If

\[
\limsup_{i \to \infty} \| x - T^{m_i} u \| = 0
\]

for some \(u \in K \) and \(x \in K \), then \(Tx = x \).

Now we are in position to give our result.

Theorem 1. Let \(p > 1 \) and let \(E \) be a \(p \)-uniformly convex Banach space, \(K \) a nonempty closed convex subset of \(E \), and \(T : K \to K \)
an asymptotically regular mapping which holds the inequality (1) such that

\[(C) \quad \left[\left(\alpha + \beta \right)^p \frac{(2^{p-1} \alpha^p - 1)}{(c_p - 2^{p-1} \beta^p) \cdot N^p} \right]^\frac{1}{p} < 1, \]

where

\[\alpha = \liminf_{n \to \infty} \frac{a_n + c_n}{1 - c_n}, \quad \beta = \liminf_{n \to \infty} \frac{b_n}{1 - c_n},\]

and N is the normal structure coefficient of E. Suppose that there is a z_0 in K for which $\{T^n z_0\}$ is bounded. Then T has a fixed point in K.

Proof. Let $\{n_i\}$ be a sequence of natural numbers such that

\[\alpha = \liminf_{n \to \infty} \frac{a_n + c_n}{1 - c_n} = \lim_{i \to \infty} \frac{a_{n_i} + c_{n_i}}{1 - c_{n_i}},\]

and

\[\beta = \liminf_{n \to \infty} \frac{b_n}{1 - c_n} = \lim_{i \to \infty} \frac{b_{n_i}}{1 - c_{n_i}}.\]

Since $\{T^n z_0\}$ is bounded (and hence $\{T^n z\}$ is bounded for any z in K), by Lemma 1, we can inductively construct a sequence $\{z_m\}$ such that z_m is the unique asymptotic center of the sequence $\{T^{m_i} z_{m-1}\}_{i \geq 1}$ with respect to the functional

\[\limsup_{i \to \infty} \|x - T^{m_i} z_{m-1}\|^p\]

over x in K.

Now for each $m \geq 1$, we set

\[D_m = \limsup_{i \to \infty} \|z_m - T^{m_i} z_m\|\]

and

\[r_m = \limsup_{i \to \infty} \|z_{m+1} - T^{m_i} z_m\|.\]
Asymptotically regular mappings

Now, using (1), we have for each $x, y \in K$ and $k, l \geq 1$,

$$\|T^k x - T^l y\| \leq \|T^k x - T^{k+l} y\| + \|T^{k+l} y - T^l y\|$$

$$\leq a_k \|x - T^l y\| + b_k (\|x - T^k x\| + \|T^l y - T^{k+l} y\|)$$

$$+ c_k (\|T^l y - T^k x\| + \|x - T^{k+l} y\|) + \|T^{k+l} y - T^l y\|$$

which by simplification, gives

$$\|T^k x - T^l y\| \leq \frac{a_k + c_k}{1 - c_k} \cdot \|x - T^l y\| + \frac{b_k}{1 - c_k} \cdot \|x - T^k y\|$$

$$+ \frac{1 + b_k + c_k}{1 - c_k} \cdot \|T^{k+l} y - T^l y\|. \quad (4)$$

By inequality (4), the result of Casini and Maluta [4], and the asymptotic regularity of T, we have

$$r_m \leq \frac{1}{N} \cdot \lim_{n \to \infty} (\sup_{n_i, n_j} \|T^{n_i} z_m - T^{n_j} z_m\| : n_i, n_j \geq n)$$

$$\leq \frac{1}{N} \cdot \limsup_{i \to \infty} (\limsup_{j \to \infty} \|T^{n_i} z_m - T^{n_j} z_m\|)$$

$$\leq \frac{1}{N} \cdot \limsup_{i \to \infty} \left[\limsup_{j \to \infty} \left(\frac{a_{n_i} + c_{n_i}}{1 - c_{n_i}} \cdot \|z_m - T^{n_j} z_m\| \right.
ight.$$

$$\left. + \frac{b_{n_i}}{1 - c_{n_i}} \cdot \|z_m - T^{n_i} z_m\| \left. + \frac{1 + b_{n_i} + c_{n_i}}{1 - c_{n_i}} \cdot \|T^{n_i+n_j} z_m - T^{n_j} z_m\| \right) \right]$$

$$\leq \frac{1}{N} \cdot \limsup_{i \to \infty} \left[\limsup_{j \to \infty} \left(\frac{a_{n_i} + c_{n_i}}{1 - c_{n_i}} \cdot \|z_m - T^{n_j} z_m\| \right. \right.$$

$$\left. + \frac{b_{n_i}}{1 - c_{n_i}} \cdot \|z_m - T^{n_i} z_m\| \left. + \frac{1 + b_{n_i} + c_{n_i}}{1 - c_{n_i}} \cdot \sum_{l=0}^{n_i-1} \|T^{n_j+l+1} z_m - T^{n_j+l} z_m\| \right) \right]$$

which implies

$$r_m \leq \frac{1}{N} \cdot (\alpha + \beta) \cdot D_m, \quad m = 0, 1, 2, \cdots , \quad (5)$$
where N is the normal structure coefficient of E. For each $m \geq 1$ and all n_i, n_j, we have from (2) and (4)

$$
\| \lambda z_{m+1} + (1 - \lambda)T^{m_j}z_{m+1} - T^{m_i}z_m \| + c_p \cdot W_p(\lambda) \cdot \| z_{m+1} - T^{n_j}z_{m+1} \|_p \\
\leq \lambda \cdot \| z_{m+1} - T^{m_i}z_m \| + (1 - \lambda) \cdot \left[\frac{a_{n_j} + c_{n_j}}{1 - c_{n_j}} \cdot \| z_{m+1} - T^{n_i}z_m \| \\
+ \frac{b_{n_j}}{1 - c_{n_j}} \cdot \| z_{m+1} - T^{m_j}z_{m+1} \| + \frac{1 + b_{n_j} + c_{n_j}}{1 - c_{n_j}} \cdot \| T^{n_i+n_j}z_m - T^{n_i}z_m \| \right]_p \\
\leq \lambda \cdot \| z_{m+1} - T^{n_j}z_m \| + (1 - \lambda) \cdot \left[\frac{a_{n_j} + c_{n_j}}{1 - c_{n_j}} \cdot \| z_{m+1} - T^{n_i}z_m \| \\
+ \frac{b_{n_j}}{1 - c_{n_j}} \cdot \| z_{m+1} - T^{m_j}z_{m+1} \| \\
+ \frac{1 + b_{n_j} + c_{n_j}}{1 - c_{n_j}} \cdot \sum_{i=0}^{n_j-1} \| T^{n_i+n_j}z_m - T^{n_i}z_m \| \right]_p .
$$

Taking the limit superior as $i \to \infty$ on each side, by definition of z_m and the asymptotic regularity of T, we get

$$
r_m^p + c_p \cdot W_p(\lambda) \cdot \| z_{m+1} - T^{n_j}z_{m+1} \|_p \\
\leq \lambda r_m^p + (1 - \lambda) \left[\frac{a_{n_j} + c_{n_j}}{1 - c_{n_j}} \cdot r_m + \frac{b_{n_j}}{1 - c_{n_j}} \cdot \| z_{m+1} - T^{m_j}z_{m+1} \| \right]_p \\
\leq \lambda r_m^p + (1 - \lambda) \left[2^{p-1} \left\{ \left(\frac{a_{n_j} + c_{n_j}}{1 - c_{n_j}} \right)^p \cdot r_m^p \\
+ \left(\frac{b_{n_j}}{1 - c_{n_j}} \right)^p \cdot \| z_{m+1} - T^{n_j}z_{m+1} \|^p \right\} \right] .
$$

It then follows from (5) that

$$
r_m^p + c_p \cdot W_p(\lambda) \cdot D_{m+1}^p \leq \lambda r_m^p + (1 - \lambda) \left[2^{p-1} \left\{ \alpha p r_m^p + \beta p \cdot D_{m+1}^p \right\} \right] \\
or
$$

$$
D_{m+1}^p \leq \frac{(1 - \lambda) \cdot (2^{p-1} \cdot \alpha^p - 1)}{c_p \cdot W_p(\lambda) - (1 - \lambda) \cdot 2^{p-1} \cdot \beta p} \cdot r_m^p \\
\leq \frac{(1 - \lambda) \cdot (2^{p-1} \cdot \alpha^p - 1)}{\left\{ c_p \cdot W_p(\lambda) - (1 - \lambda) \cdot 2^{p-1} \cdot \beta p \right\} \cdot (\alpha + \beta)^p} \cdot D_m^p .
$$
Asymptotically regular mappings

Letting $\lambda \uparrow 1$, we conclude that

$$D_{m+1} \leq \left[\frac{(\alpha + \beta)^p 2^{p-1} \cdot \alpha^p - 1}{(c_p - 2^{p-1} \cdot \beta^p) \cdot N_p^p}\right]^\frac{1}{p} \cdot D_m$$

$$= A \cdot D_m, \quad m = 1, 2, \ldots,$$

where

$$A = \left[\frac{(\alpha + \beta)^p 2^{p-1} \cdot \alpha^p - 1}{(c_p - 2^{p-1} \cdot \beta^p) \cdot N_p^p}\right]^\frac{1}{p} < 1$$

by the assumption of the theorem. Since

$$\|z_{m+1} - z_m\| \leq r_m + D_m \leq 2D_m \leq \cdots \leq 2 \cdot A^m D_1 \to 0$$

as $m \to \infty$,

it follows that $\{z_m\}$ is a Cauchy sequence. Let $z = \lim_{m \to \infty} z_m$. Then we have

$$\|z - T^{n_i}z\|$$

$$\leq \|z - z_m\| + \|z_m - T^{n_i}z_m\| + \|T^{n_i}z_m - T^{n_i}z\|$$

$$\leq \|z - z_m\| + \|z_m - T^{n_i}z_m\| + a_{n_i} \cdot \|z_m - z\|$$

$$+ b_{n_i} (\|z_m - T^{n_i}z_m\| + \|z - T^{n_i}z\|) + c_{n_i} (\|z_m - T^{n_i}z_m\| + \|z - T^{n_i}z_m\|)$$

and so

$$\|z - T^{n_i}z\| \leq \frac{1 + a_{n_i} + 2c_{n_i}}{1 - b_{n_i} - c_{n_i}} \cdot \|z - z_m\| + \frac{1 + b_{n_i} + c_{n_i}}{1 - b_{n_i} - c_{n_i}} \cdot \|z_m - T^{n_i}z_m\|.$$

Taking the limit superior as $i \to \infty$ on each side, we get

$$\limsup_{i \to \infty} \|z - T^{n_i}z\| \leq \limsup_{i \to \infty} \frac{1 + a_{n_i} + 2c_{n_i}}{1 - b_{n_i} - c_{n_i}} \cdot \|z - z_m\|$$

$$+ \limsup_{i \to \infty} \frac{1 + b_{n_i} + c_{n_i}}{1 - b_{n_i} - c_{n_i}} \cdot D_m \to 0$$

as $m \to \infty$.

Therefore we obtain $Tz = z$ by Lemma 2. This completes the proof. □

Górnicki [11] proved the following theorem:
THEOREM ([Górnicki]). Let \(p > 1 \) and let \(E \) be a \(p \)-uniformly convex Banach space, \(K \) a nonempty bounded closed convex subset of \(E \), and \(T : K \to K \) an asymptotically regular mapping. If

\[
\liminf_{n \to \infty} |||T^n||| = k < \left[\frac{1}{2} \left(1 + \sqrt{1 + 4 \cdot c_p \cdot N_p} \right) \right]^\frac{1}{p},
\]

(where \(|||T^n||| \) is the Lipschitz constant of \(T^n \), i.e.,

\[
|||T^n||| = \sup \left\{ \frac{||T^n x - T^n y||}{\|x - y\|} : x \neq y, \ x, \ y \in K \right\},
\]

\(N \) is the normal structure coefficient of \(E \), and \(c_p \) is the constant in (2)), then \(T \) has a fixed point in \(K \).

If we put \(b_n = c_n = 0 \) in (1), then \(a_n \) is equal to \(|||T^n||| \) and the condition of Górnicki [11] that

\[
k < \left[\frac{1}{2} \left(1 + \sqrt{1 + 4 \cdot c_p \cdot N_p} \right) \right]^\frac{1}{p} \quad \text{or equivalently} \quad \left[\frac{k_p (k_p - 1)}{c_p \cdot N_p} \right]^\frac{1}{p} < 1
\]

follows from condition (C) of Theorem 1, and hence the result of Górnicki [11] follows as special case of Theorem 1.

REMARK 1. In place of bounded subset \(K \) of [11], we have taken weaker assumption that there is an \(z_0 \) in \(K \) for which \(\{T^n z_0\} \) is bounded.

3. Some Applications

In a Hilbert space \(H \), the following equality holds:

\[
\|\lambda x + (1 - \lambda)y\|^2 = \lambda\|x\|^2 + (1 - \lambda)\|y\|^2 - \lambda(1 - \lambda)\|x - y\|^2
\]

for all \(x, \ y \) in \(H \) and \(\lambda \in [0, 1] \).

By Theorem 1 and (6), we immediately obtain the following.
Asymptotically regular mappings

Theorem 2. Let K be a nonempty closed convex subset of a Hilbert space H and $T : K \to K$ an asymptotically regular mapping which holds the inequality (1) such that

$$\left[\frac{(\alpha + \beta)^2(2\alpha^2 - 1)} {2(1 - 2\beta^2)} \right]^\frac{1}{2} < 1,$$

where α, β as in Theorem 1. Suppose that there is a z_0 in K for which \{${T^n z_0}$\} is bounded. Then T has a fixed point in K.

If we put $b_n = c_n = 0$ in (1), then from Theorem 2, we have the following result.

Corollary 1 ([11, Corollary 2]). Let K be a nonempty bounded closed convex subset of a Hilbert space H. If $T : K \to K$ is an asymptotically regular mapping such that

$$\lim_{n \to \infty} |||T^n||| < \sqrt{2},$$

then T has a fixed point in K.

If $1 < p \leq 2$, then we have for all x, y in L^p and $\lambda \in [0, 1]$,

(7) $\|\lambda x + (1 - \lambda)y\|^2 \leq \lambda\|x\|^2 + (1 - \lambda)\|y\|^2 - \lambda(1 - \lambda)(p - 1)\|x - y\|^2.$

(The inequality (7) is contained in Lim, Xu and Xu [13] and Smarzewski [21].)

Assume that $2 < p < \infty$ and t_p is the unique zero of the function $g(x) = -x^{p-1} + (p - 1)x + p - 2$ in the interval $(1, \infty)$. Let

$$c_p = (p - 1)(1 + t_p)^{2-p} = \frac{1 + t_p^{p-1}} {(1 + t_p)^{p-1}}.$$

Then we have the following inequality

(8) $\|\lambda x + (1 - \lambda)y\|^p \leq \lambda\|x\|^p + (1 - \lambda)\|y\|^p - W_p(\lambda) \cdot c_p \cdot \|x - y\|^p$

for all x, y in L^p and $\lambda \in [0, 1]$. (The inequality (8) is essentially due to Lim [12].)
THEOREM 3. Let K be a nonempty closed convex subset of L^p, $1 < p < \infty$, and $T : K \to K$ an asymptotically regular mapping which holds (1) such that

$$\left[\frac{(\alpha + \beta)^2 \cdot (2\alpha^2 - 1)}{((p-1) - 2\beta^2) \cdot 2^{\frac{p-1}{p}}} \right]^{\frac{1}{2}} < 1 \quad \text{for } 1 < p \leq 2$$

and

$$\left[\frac{(\alpha + \beta)^p \cdot (2^{p-1}\alpha^p - 1)}{(c_p - 2^{p-1}\beta^p) \cdot 2} \right]^{\frac{1}{p}} < 1 \quad \text{for } 2 < p < \infty,$$

where α, β as in Theorem 1. Suppose that there is a z_0 in K for which $\{T^n z_0\}$ is bounded. Then T has a fixed point in K.

If we put $b_n = c_n = 0$ in (1), then from Theorem 3, we have the following result.

COROLLARY 2 ([11, Corollary 3, 4]). Let K be a nonempty bounded closed convex subset of L^p ($1 < p < \infty$). If $T : K \to K$ is an asymptotically regular mapping such that

$$\liminf_{n \to \infty} \|T^n\| = k < \left[\frac{1}{2} \left(1 + \sqrt{1 + 4 \cdot (p - 1) \cdot 2^{\frac{p-1}{p}}} \right) \right]^{\frac{1}{2}} \quad \text{for } 1 < p \leq 2$$

and

$$\liminf_{n \to \infty} \|T^n\| = k < \left[\frac{1}{2} \left(1 + \sqrt{1 + 8 \cdot c_p} \right) \right]^{\frac{1}{p}} \quad \text{for } 2 < p < \infty,$$

then T has a fixed point in K.

Let H^p, $1 < p < \infty$, denote the Hardy space [7] of all functions x analytic in unit disc $|z| < 1$ of the complex plane and such that

$$\|x\| = \lim_{r \to 1^-} \left(\frac{1}{2\pi} \int_0^{2\pi} |x(re^{i\theta})|^p d\theta \right)^{\frac{1}{p}} < \infty.$$
Asymptotically regular mappings

Now, let Ω be an open subset of \mathbb{R}^n. Denote by $H^{k,p}(\Omega)$, $k \geq 0$, $1 < p < \infty$, the Sobolev space [1, p.149] of distributions x such that $D^\alpha x \in L^p(\Omega)$ for all $|\alpha| = \alpha_1 + \cdots + \alpha_n \leq k$ equipped with the norm

$$
\| x \| = \left(\sum_{|\alpha| \leq k} \int\int_{\Omega} |D^\alpha x(\omega)|^p d\omega \right)^{\frac{1}{p}}.
$$

Let $(\Omega_\alpha, \sum_\alpha, \mu_\alpha)$, $\alpha \in \Lambda$, be a sequence of positive measure spaces, where index set Λ is finite or countable. Given a sequence of linear subspaces X_α in $L^p(\Omega_\alpha, \sum_\alpha, \mu_\alpha)$, we denote by $L_{q,p}$, $1 < p < \infty$ and $q = \max\{2, p\}$ [15], the linear space of all sequences $x = \{x_\alpha \in X_\alpha : \alpha \in \Lambda\}$ equipped with the norm

$$
\| x \| = \left(\sum_{\alpha \in \Lambda} \left(\| x_\alpha \|_{p,\alpha} \right)^q \right)^{\frac{1}{q}},
$$

where $\| \cdot \|_{p,\alpha}$ denotes the norm in $L^p(\Omega_\alpha, \sum_\alpha, \mu_\alpha)$.

Finally, let $L_p = L^p(S_1, \sum_1, \mu_1)$ and $L_q = L^q(S_2, \sum_2, \mu_2)$, where $1 < p < \infty$, $q = \max\{2, p\}$, and $(S_\iota, \sum_\iota, \mu_\iota)$ are positive measure spaces. Denote by $L_q(L_p)$ the Banach spaces [6, III. 2.10] of all measurable L_p-value function x on S_2 such that

$$
\| x \| = \left(\int_{S_2} \left(\| x(s) \|_p \right)^q \mu_2(ds) \right)^{\frac{1}{q}}.
$$

These spaces are q-uniformly convex with $q = \max\{2, p\}$ [19, 20] and the norm in these spaces satisfies

$$
\| \lambda x + (1 - \lambda)y \| \leq \lambda \| x \| + (1 - \lambda)\| y \| - d \cdot W_q(\lambda) \cdot \| x - y \|^{q}
$$

with a constant

$$
d = \begin{cases}
\frac{p - 1}{8} & \text{for } 1 < p \leq 2 \\
\frac{1}{p \cdot 2^p} & \text{for } 2 < p < \infty.
\end{cases}
$$

Now, from Theorem 1, we have the following result.
Theorem 4. Let K be a nonempty bounded closed convex subset of the space E, where $E = H^p$, or $E = H^{k,p}(\Omega)$, or $E = L_{q,p}$, or $E = L_q(L_p)$, and $1 < p < \infty$, $q = \max\{2, p\}$, $k \geq 0$. Let $T : K \to K$ be an asymptotically regular mapping which holds the inequality (1) such that

$$
\left[\frac{(\alpha + \beta)^q \cdot (2^{q-1} \cdot \alpha^q - 1)}{(d - 2^{q-1} \cdot \beta^q) \cdot N^q} \right]^\frac{1}{q} < 1,
$$

where α, β as in Theorem 1. Suppose that there is a z_0 in K for which $\{T^n z_0\}$ is bounded. Then T has a fixed point in K.

If we put $b_n = c_n = 0$ in (1), then from Theorem 4, we have the following result:

Corollary 3 ([11, Corollary 5]). Let K be a nonempty bounded closed convex subset of the space E, where E is as in Theorem 4. If $T : K \to K$ is an asymptotically regular mapping such that

$$
\liminf_{n \to \infty} ||T^n|| = k < \left[\frac{1}{2} \left(1 + \sqrt{1 + 4 \cdot d \cdot N^q} \right) \right]^\frac{1}{q},
$$

then T has a fixed point in K.

References

Asymptotically regular mappings

Jong Soo Jung, Department of Mathematics, Dong-A University, Pusan 607-714, Korea
E-mail: jungjs@mail.donga.ac.kr

Balwant Singh Thakur, Govt. B. H. S. S. Cariaband, Dist. Raipur, M. P. 493889, INDIA

Daya Ram Sahu, Department of Applied Mathematics, Shri Shankaracharya College of Engineering, Sector-6, Bihai- 490006, INDIA

741