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DICKSON INVARIANTS HIT
BY THE STEENROD SQUARE

K. I', TAN aND KaI XU

ABSTRACT. Let Dj be the Dickson invariant algebra of Fa[ X7, X2, X;3]
by GL{3,F;). In this paper, we provide an elementary proof of The-
orem 3.2 of {2]: each element in Dj is hit by the Steenrod square in
Fo[ X1, X2, Xs).

1. Introduction

Throughout this paper, we work on the polynomials and homology
groups over F,. The objective of this paper is to give an elementary
proof of the special case of the conjecture that each element in D, is hit
by the Steenrod square, where n > 2. This conjecture is closely related
(2] to the famous spherical conjecture, which says that the image of the
Hurewitz map: m,.(QpS°) — H.((pS°) can only be elements of Hopf
invariant one and of Kervaire invariant one.

Let GL{n,F;) be the n x n-general linear group over F;. Then the
standard group action:

GL(TE,]FQ) x Fg[Xl,Xg, e ,Xn] — ]FQ[Xl,Xg, ey Xn]
gives rise to the algebra of Dickson invariants
IF? [le XQ) R 1Xn]GL(n'F2)1

which is isomorphic to the polynomial ring F2[Qy.0, Qs 1, -+, @nn—1], Where
each generator Q,; (¢ =0,...,n — 1) is a certain polynomial ocver F,.
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DEFINITION 1.1. A polynomial f(X;,Xs,...,X,) is hst if it can be
written as

XL Xay, o X)) =) SA (X, Xoy e, X))

i>1

for some polynomials f;(X;, Xy, ..., X,).

QUESTION 1.2. Is each Dickson invariant hit?

The motivation of presenting this question was illustrated in detail in
[2] and in an excellent expository paper [9], p501. When n = 1 and 2,
the answer to the above question is negative. For example, when n = 1,
the Dickson invariant X, is not hit; when n = 2, X2+ X2 + X1 X, is a
Dickson invariant but is not hit.

CoNJECTURE 1.3 (Hung [2]). When n > 3, all Dickson invariants
are hit.

When n = 3, Hung has proved that the conjecture is true [2] by
using many advanced tools. The main goal of this paper is to give an
elementary proof of the above conjecture when n = 3.

Write V], = X;, Vb, = Xg(Xg +X1), and V4 = Xg(X3 + XQ)(X;; -+
X1)(X3+ Xo+ X1). Then Qsp = V3VaWi, Qu1 = Q40+ VaQa1 = (VaV1)2 +
Va(VE4+Va), and Q32 = Q3+ V3 = (VP +V2)? + V4. Clearly, deg(Qs0) = 7,
deg(Qs,) = 6, and deg(Qs2) = 4. The Steenrod operation acts on the
Dickson invariants in the following way.

THEOREM 1.4 (Hung {1]). The Steenrod operation acts trivially on
(30, @31, and Q32 except for the following cases,

Sq'Qa0 = Q30@32, S9°Qap = @30Q3.1,
Sa' @0 = Q% Sq'Qs1 = Qsp,

8q'Qs1 = Q31Q32, S9°Q31 = Q30Q32,
Sq6Q3,1 = Q%.l, Sq2Q3,2 =31,
Sq3Q3,2 = Qsp, Sq4Q3,2 = Qg,z .
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Now we define a function v : NU {0} — N as follows: ¥(0) = 0 and
for k > 1, y(k) = 25 — 1. Write u(n) for

min {m eEN|n= Z'Y(ki) for some k; € N}.
i=1
Let £ and F be homogeneous polynomials of degrees e and f, respec-
tively. Then we have the following.

THEOREM 1.5 (Silverman [5]). Suppose that e < (25! — Vu(f) for
some k > 0. Then the polynomial EF?™ is hit.

For an integer t, let «(t) be the number of digits 1 in the binary
expansion of £ and let U be an n-variable homogeneous polynomial. Then
we have the following theorem, known as the Peterson Conjecture.

THEOREM 1.6 (Wood [8]). If a(deg(U) +n) > n, then U is hit.

John Milnor showed that there is an anti-automorphism y from the
Steenrod algebra to itself, satisfying the following condition,

k
x(Sq*) = ZSqix(qu“’;) for k> 1.
i=1
We will frequently use the so-called x-trick in the following sections,
which is based on the following.

PROPOSITION 1.7 (see for example, [9]). For any polynomials E, and
E2r
E\[Sq™(Ex)] = [x(8q™)(E1)] Bz
is hit, where m is any non-negative integer.

ACKNOWLEDGMENT 1.8. We would like to thank W. M. Singer for
a correspondence, which provides us a brief introduction on the subject
related to the Steenrod algebra. We also would like to thank K.G. Monks
for providing his Maple program on the Internet. His source code benefits
us a great deal.
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2. Proofs

Clearly, to prove our result, we only need show that Q3%Q%31 Q5% is hit
for any non-negative integers ng, n; and ny. The proof w111 spht into the
following cases.

(1) At least two of ng,n and ny are even;

(2) Exactly one of ng,n; and ny is even;

(3) ng, ng are odd and n; =1 mod 4;

{4) ngisodd, n; =3 mod 4 and ny =1 mod 4;

(5) ng=1 mod 4, n; =3 mod 4 and ns =3 mod 4;
(6) no =3 mod 4,n; =3 mod 4 and ny =3 mod 4.

Now we will prove each of the above six cases.

REMARK 2.1. The proof of Cases (1)-(4) is extracted from the first
author’s MSc thesis [7].

NoTaTion 2.2. For simplicity, we use the following notation: for any
polynomials E) and Fs, £, = F; means that £y — E, is hit.

2.1. Proof of Case (1)

If ng, n;, and ny are all even, then the result is a direct consequence
of the definition of the Steenrod square.

Suppose that n, ny are even and ng is odd. Then putting ng = 241,
ny = 2{1, and ny = 2[;, we have the following,

Qs 0Q31 3. Q%HQ% g%
[Sq Q31] Q 31 32)2
= Sq {Qs.l(Qs,oQ 2 ]

Suppose that ng, ny are even and n,; is odd. Then by letting ny = 21,
ny = 2l; + 1, and ny = 23, we have the following,

QiR Q%% ?3 aa %’a o
= Sq [Qsz(Q 31 2502 + Q32507 (Q4,Q4 Q%)
= Q32Sq (Q 31 32)2-
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Notice that
(2.1.1) Q32= Q% + V3 and Vi =Sq'(Qa1 X5+ X3).
Then

Q3250 (Q1,Q3,Q%.)° = (QF, + VS)SQ (Q%0Q%,Q%2)"]
[Qmsq (Q l3]1 32)]2

[(Q2 1X3 + X3)(Sq (Q %"2))2]
= 0

Suppose that ng, n; are even and ny is odd. Putting ng = 2, n1 = 21,
and ny = 2l; + 1, we have the following,

QO = @530851Q55"

(@3, +5q' (Q21X3 +X3))(Q bQ2,)? (using (2.1.1))
(Q2,1Q Q31 32) +Sq I( Q21X3+X3))( g,iQ?g)z]
0

[l

So Case (1) has been done. O

2.2. Proof of Case (2)

Suppose that ng = 2l;, ny = 2l + 1 and ny = 2l; + 1. We will use the
x-trick (1.7) to prove the result. Notice that

(2.2.1)
QQT Q5% = [Sq*(Q31)(Q¥,@4:Q%,)* = Qsux(Sah)(Q%,Q4,Q%,)%.

Using the formulae x(Sq*) = Sq* + SqQSq and Qs; = 8q*(Qs2), we can
eastly see that the last term of (2.2.1) can be reduced to

Sq*(Qs,2)[Sq” (Q 4 50.2,2 I° +Q3.1[SQI(SQI(Q§’, 331 32))]2-

Noting that Sq'Sq' = 0, the last term is zero. Again using the x-trick,
the first term is hit if and only if Q3,2x(Sq2)[Sq2(Qf{0 ‘311 ?2)}2 is hit.
Now
Qs 2X(SC1 )[Sq Q 31 32)]2
=(Q5, + ‘[/3,)[8(1 Sq (Q h :lazz J?
_V[Sq SCI( 31 32)]2
= 5 {(Q2 X; + XD)[Sa'Se? (Q30Q3,Q%)1).
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Suppose that ng = 2l + 1, ny = 2[;, and np; = 2l + 1. Then
Q3p@31Q%% = §I3+1 ?11 §I.2'a+l 1
= Sq [Q3 1¢3 2(Q30Q31 32) ] (since Sq Q32 = 0).
Suppose that ng =2l + 1, ny = 2l + 1, and ny = 2l;. Then
(2.2.2) Q@105 = Q35 Q51T Q53 = Sa*(Qs2)[Qa0(Q50W@5:@12)"].
Since Sq’(Q30) = 0 for i = 1,2, Sq'Q32 = 0 and Q30 = V3V, the last
term in (2.2.2) is reduced to
Q32Q3059°[(Q5,Q5,Q%,)%]
= Sq" (@21 X3 + XD)VaV1Q3 1 [Sa' (Q%, Q4. Q%,))
+ 59" (@21 X5 +X§)Q3,0[Sq (ng,o £31,1 50,2,2)]2-

The last two terms are hit, since Sq! acts on V3V and Qs trivially.

2.3. Proof of Case (3)

Suppose that ng = 4y + 1, ny = 4f; + 1, and n2 = 2l + 1. Let
B be the polynomial Q% §“1 552 Then Q35 0Q31 3p = Q30Q31Q32
— VE;V 1/'17B2 +V£3V5V3.82 +1/32I/2VTB2 +V3v1v3B2 +V2V2v532 +V2
V; Vll B2 +V33 V22 Vll B2.

Now we will show that each term after the last equality is hit. Using
the following lemma, we will know that the first four terms are hit.

LEMMA 2.3. For any positive odd integers kg, k), and ke, the polyno-

mial
I/‘:;ko%kl ‘/{kQB?

is hit.

Proof. Put kg =2a+ 1, k;, =2b+ 1, and k3 = 2¢ + 1. Then we have
VoV, v B
V32a+1V22b+1V12c+1 B2
[Sql(Qz,le + X;,?)]V32a1/22b+11f”'126+]32
= Sq'[(Qo1 X5+ X3) (VP VPV B (since 8q'(VaVy) = 0).O
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Since VFVEVE B = Vi (V3WLVEB)? and VIV V] B = Vi(V3V B)?, we can
verify that these two terms satisfy the condition in Theorem 1.5. So they
are hit.

It remains to show that VFV2V]! B? is hit. In fact

V33V22V1152

= XIX2X2B? 4 X, X!X1B? + X]X3X3B? + X, X3 X3 B
+XPXSX3BY+ XPXEXOB? + X{X3X0B? + XiX:X)0B?
+ X, X0XPPB2+ XIXEXEB? + XPXIXEB2 + X2XIX5B?
+XFXPX3IB? + X, X1 XEB? + X?X4XiB? + X X5 X B?
+XEXSXAB? + X{XIX4B? 4+ XTXEXIB: + X3 X' X:B?
+XPX3XIB + X3XEXIB? + XPXSXI B+ XX X5 B?
+XPX3X3B2 - X3 XIX3B2,

Using Theorem 1.5, we can prove all but the following terms are
hit: XPXSX3B?, X7{X2X3B?, X)X3X3B?, X]X:X3B®, X3X3X:B2,
and X? X3 X3B?. Indeed we only need the following proposition to con-
clude the result.

ProprosSITION 2.4. X3X3XIB? + XPX3XIB? X)X3XiB? +
XX3X3B? and X3X3X3B? + X}X3XEB? are hit.

Proof. Careful observations reveal the following,

(2.3.1)

XPX2X3 + X7 X3X3 = S (X)X X3) + Sq' (X1°X3X3) + X7 X3 X3,

XPX; X35+ XIX5 X = S (XTX3X3) + Sa' (X7 X3°X]) + X{ X9 X3,
and

XPX) X5 + X1 X5 X5 = 54" (X[X3X5) + Sq" (XX X3°) + X} X3 X3,
We shall show that X} X3 X3$B* + X? X3 X$B? is hit; the remaining two
cases can be proved similarly.

By Theorem 1.5, X]X3X3B? = X,(X{X}X2B)* in (2.3.1} is hit. So
we are left to show that Sq*(X{X3X3)B? 4+ Sq (X °X3X3)B? is hit. This
can be done by using the x-trick. In fact,

XPX3X3[x(8¢%) (BY)] + X{ X3 X [x(Sa' (BY)] = 0,
where we use the facts that Sq°B% = 0 and Sq'B2 = 0. a
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To finish the proof of Case(3), we are left to show that Q35" Q3 " Q35"
is hit. The proof can be done as follows,
4!0+3Q4l]+1 Qzlﬂ‘i“l

B QSQOQ“QMQ% gtizu g%41 Al 21
= 5q [Q30Q31Q3 2](Q 041 3114! 322t+ Q304?3%(% 052321[ 33)
= Q3,0Q3,1Q3,2X(Sq NQ33Q51Q52) + Q35" @zl Q35

It is easy to see that the first term is zero and that the second term is
hit by using the result of Case (1).

2.4. Proof of Case (4)

Put ng = 2l + 1, ny = 41, + 3, and ny = 4l, + 1. 1t is easy to verify
that

Q30@31Q32 = 59" [@30Q3, Q3] + Q30Q3 2 + @20Qy.1 Q50
Thus

2Ap+1 44l +3 Hdl 1 2y 4 it
Q3UQ 32_Q 5* Q i Q 2F Q30Q31Q32(Q 0 Si 3.%)

= 50Qu0Q@0 @3] (Q2QH1Q85) + QHs QRN + QI Qlg ™

The last two terms are hit by the results of Cases (1) and (2). Using the

x-trick and the result of Case (3), it can be shown that the first term is
also hit. We will leave the detail to the reader to verify the conclusion.

2.5. Proof of Case (5)
When ng = 4ly + 1, ny = 41, + 3, and ny = 4y + 3,
Q3OQ 32 — Q410+1Q4f1+3Q412+3

4lo 411 a4l
- PlQ 3,132,

where P, = Q4,Q3,Q3,, which is a symmetric polynomial in X, X5, and
X3. Let X2X2XS be a term in the expansion form of P,. For dimension
reason, a + b+ ¢ = 37. Suppose that a is odd, b and ¢ are even. Then
setting k=0, F= X1, and

F=X7 X} xiQBohqh,

we have
{fe—1)+b+c

deg F =
eg 5
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So p(deg(F)) > 2. Hence we can use Theorem 1.5 to conclude that
XEXEXEQUQM QY
is hit. Suppose that g, b, and c are all odd. Then after expanding P,,

we know that up to the permutation, {a, b, ¢) can only have the following
choices,

(3,13,21),(3,9,25), (5, 11,21), (5, 13, 19),
(7,9,21),(7,11,19), (7,13,17), (9, 11, 17).

Referring to the above list, we wish to show that XFXB X2 Q3051 Q3
is hit. Use the condition of Theorem 1 5 as follows Settmg k=1,
E - X13X2.X3, and F = XSX:?Q QSI 32, then

degE:Sand degF—8+7lg+611+4l2

Hence (261 — 1)u(deg F') = 3u(8+T7ly +61, +41,). Suppose that Iy is even.
Then the condition of Theorem 1.5 is satisfied. Hence we are done. Sup-
pose that Iy is odd, if the condition of the Peterson Conjecture(Wood'’s
Theorem) is satisfied, namely,

3<a(37+4-Tlg+4-6L +4-4l,+3),

then we have proved the result. If the condition is not satisfied, then the
Minimum Spike exists [6], p.578. So there exist non-negative integers
m > r 2 s, such that 37+4-7lg+4. 61, +4-4l; = 2™ —~14+2"—14+925—1.
This implies that 7lg + 6l; +4ls = 2™ 2 +2"2_-9 s=2 and r > 3. The
property for Minimum spike implies that we can assume m > r if r > s.
So u(8+47lp+6l1+4l2) = p(8+2™2+27-2—9) > 2. Hence the condition for
Theorem 1.5 is satisfied. Therefore X} X3 X2'Q8Q13Q3 is hit. Using
the same method, we can show that all the polynomlals corresponding
to the list (2.5.1) are hit except for the case: (a,b,¢) = (7,11,19) and its
permutations.

(2.5.1)

LEMMA 2.5. For any non-negative integers ly, Iy, and l,, the following
statements are true.

(1) Sq' [Q'“” ‘“’ 417"] = 0 for i not divisible by 4;

(2) For any non-negative integert, Sq4t[Q‘”° ‘3“; ] = ZQ“" 43‘ 452
for some integers sq, $1, and s;

( Sq4sq [Q4lg 4!1 4!2] =0.
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Proof. The proposition is a basic consequence of the Cartan formula
and Theorem 1.4. We leave the detail to the reader. 0

In the following, we will frequently use the above lemma without men-
Al ~dh Al

tioning each time. Denote by Y the product @33¢31¢33-
LEMMA 2.6.
(XIX3 X0+ X X]XP)Y = (XTX5' XT + X' X]X3)Sq°5qY.

Proof. This is an elementary exercise, using the x-trick, Theorem 1.5
and Lemma 2.5. O

Let P be the set consisting of the index (1,2,3) and all its permuta-
tions. Then we have the following,

S XTXI XY
P

= (XTXDXP + XPXIXY + (XXX + XPXPXDY
+ (XPOXIXI 4+ XPXIXY =0 (using Lemma 2.6).

2.6. Proof of Case (6)

When Ng = 410 + 3, ny = 411 + 3, and Mg — 412 + 3,
Q@@ = Q5 Q5 Q"
= RY,

where P» = Q%loQg,ngz and ¥ = ng"o ;l} gt; After expanding P,
by applying Theorem 1.5 and Peterson’s Conjecture(Wood’s Theorem),
we can conclude that all the corresponding terms are hit, except the
following terms, up to the permutations,

(2.6.1) XTXPXPEY, XIX3'XPFY and X]'X°XE'Y.

For example, X7 X21 XY appears in the expansion of P,Y. We will show
that it is hit. Set k = 1, E = X, X,X,, and F = X, XJX$Q%,Q%,Q%,.
If deg F' is even, then the condition of Theorem 1.5 satisfied. So EF?*(=

X3X2XPY) is hit. If deg F is odd, then we can assume that o(3 +
EF*) < 3 (otherwise the result is proved using the Peterson Conjecture
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{Wood’s Theorem)). So the Minimum Spike exists {6}, p.578. Hence
deg(EF*) = 2™ — 142" — 1+ 2° — 1 for some integers m > r > s.
Therefore we have the following,

3+ 484+ 4(7ly+ 6L+ 4l) =deg(EFY) =2 —1+2" - 1 +2° - 1.

This implies that 7lp + 60, +4l, =2™2 422 - 13, s =1, and 7 > 2.
Using the property of the Minimum spike, we may assume that m > r.
So

p(deg F) = p(12 4 Tly + 61 +4l) = p(2™ 24272 1) > 2.

Therefore the inequality: deg E < (2% — 1)u(F) is true. Hence the con-
dition of Theorem 1.5 is satisfied. Using the same method, we can show
that all the terms of Y corresponding to the expansion of P, are hit,
except the terms listed in (2.6.1).

Recall that Y denotes ngg gli 315 Using the x-trick, Theorem 1.5
and Lemma 2.5, we can show that
(2.6.2) (XTXNXB 4+ XTXPXB)Y = X]XPXPSPY.
It is easy to show that (2.6.2) implies that

(263) Y (XTXPXP+ X[XXP)Y =) XTXPXPSq'S*Y
P P

where P is the set consisting of the index (1, 2, 3) and all its permutations.
Again using the y-frick, Theorem 1.5 and Lemma 2.5, we can show the
following,

LEMMA 2.7.
X{X3' X3'8q"S*Y = (X' X7 X% + XPPXPXY.

Combining the above lemma with (2.6.3), we have
SpIXPXP + XTXPXE + XUXEXP)Y

>l XTI X3 X2Sq*SeY + XXXV ]

S XPXEXY 4 XX
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