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THE INDEX FOR A TOPOLOGICAL DEGREE
THEORY FOR DENSELY DEFINED OPERATORS
OF TYPE (S,)o; IN BANACH SPACES

ATHANASSIOS G. KARTSATOS AND 1GOR V. SKRYPNIK

ABSTRACT. This is a summary of results involving the development
of a theory of an index of an isolated critical point for densely
defined nonlinear operators of type (S4t)o,r. This index theory is
associated with a degree theory, for such operators, which has been
recently developed by the authors.

1. Introduction and preliminaries

Let X be a real separable reflexive Banach space” with dual space
X*. The norm of the space X (X*) will be denoted by | - ||
(|| - l+). We let R™ denote the Euclidean space of dimension n and
set R = R For x5 € X and r > 0, we let B,.{(xp) denote the open
ball {x € X : ||z — zo] < r}. Unless otherwise stated, N is the set of
natural numbers. An operator A : X D D(A} — X~ is “bounded” if
it maps bounded subsets of its domain onto bounded sets in X™*. It is
“compact” if it is strongly continuous and maps bounded subsets of
D(A) onto relatively compact sets in X*. In what follows, the single
term “continuous” means “strongly continuous”. We denote strong
and weak convergence by “—” and “—", respectively. We consider an
operator A : X D D(A) -— X* with domain D(A) dense in some open
set Dy C X. We assume that there exists a subspace L of the space X
such that

(1.1) DynLC D(A), L=X.
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Let F(L) be the set of all finite-dimensional subspaces of L.

DEFINITION 1.1. We say that the operator A satisfies Condition
(Sy)o,1 if for every sequence {u;} C D(A) with

(1.2) u; = ug, limsup{Auj,u;) <0, lim (Auj,v} =0,

j—o0 j—re0
for some up € X and any v € L, we have

(13) u; — ug, Ug € D(A), Aug = 0.

In (1.2), and the sequel, {h,u} denotes the value of the functional
h € X~ at the element u € X.

DEFINITION 1.2. We say that the operator A satisfies Condition
(S4+)1 if the operator Ap : D{A) — X*, defined by Apu = Au—h
satisfies Condition (S )o 1 for any h € X*.

A degree theory was developed in [3] for an operator A : D(A) C
X — X*, with respect to a bounded open set D C X, under the
assumption that

(1.4) Au+#0, forue D(A)NAD, D C Dy,

while A satisfies the following additional conditions:

Aj) there exists a subspace L of X satisfying (1.1) and such that
the operator A satisfies Condition (S, )o,r;

Ay) for every F € F(L), v € L the mapping a(F,v) : F — R,
defined by (a(F,v)){u) = (Au,v), is continuous.

We now define the index of a critical point for an operator A satis-
fying A;), Aa).
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DEFRINITION 1.3. A point up € D(A)N Dy is called a “critical point”
of the operator A if Aup = 0. A critical point ug € D{A) N Dy is
an “isolated critical point” of the operator A if there exists a ball
B,{up) C Dy which contains no other critical point of the operator A.
From the proof of Theorem 2.1 in [3], we can show that

Deg(A! B, (u{)), 0) = Deg(A: BT‘('U’O): 0)1

for every ' € (0, 7).

From the above definition we have

DEFINITION 1.4. The number

(1.5) lir% Deg(A, B,(up),0)
o

is called the “index” of the isolated critical point 4p of the operator A
and is denoted by Ind(A, up)-

Our purpose here is to calculate the index Ind{A,up) by using a
certain linearization of the nonlinear operator A at the critical point. In
the known results, for Leray-Schauder operators [5, Theorem 4.7] and
bounded demicontinuous operators of type (5.) [8, Theorem 4.2, this
linearization is given by means of Fréchet or Gateaux derivatives at
the critical points of the nonlinear operators under consideration. We
may further assume that ug = 0.

We now recall the assumptions for the calculation of the index in
[9]. These assumptions are given in a form that can be used later for
the relevant unbounded linear operators.

Let A: X D B.(0) — X* be a nonlinear operator which satisfies
Condition {5;) and A(0) = 0. Assume that A has the Fréchet deriva-
tive A’ : X — X™* at zero. Let

(1.6) Ze =Uepy {u ¢ tAu+ (1 -t)Au =0, 0 <|lu)| <e}.

A’} The equation A’v = 0 has only the zero solution. There exists a
compact linear operator I' + X — X™ such that
((A" +Tu,u) >0, foruc D(A"), u#0,

(1.7) , ,
(A" +T)v,v) >0, forve D((A}"), v#0,
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and the operator T = (A’ + T)"I' : X — X is well defined and
compact;
)} the weak closure of the set

(1.8) 05:{1):”—2“ :uEZE}

does not contain zero for some sufficiently small € > 0.

In (1.7) (A")* is the adjoint of the operator A’. We note that in [9]
D(A'Y = X and the second inequality in (1.7) follows from the first. By
the assumptions A’), C) in [9], the value of Ind(A,0) is calculated in
terms of the multiplicities of the characteristic values of the operator
T. We also note that in [8] there is an example demonstrating the fact
that it is generally impossible to calculate Ind(A, 0) without Condition
C).

A natural question arises now: how do we introduce a workable
concept of linearization for a densely defined operator? Before we
formulate our new linearization concept, we introduce the auxiliary
operator Ag : X D D(Ap) — X* which satisfies the following condition:

Ap) Ap is a bounded nonlinear operator which satisfies Conditions
(5:)r, As) and is such that DgNL C D(Ag), Ag(D) =0 and

oy Aol

woissy Ml

=0.

We solve the problem of linearizing for the nonlinear operator A,
satisfying Conditions A;), A4s), in the following way. We assume that
there exist a nonlinear operator Ap satisfying Ag) and a linear operator
A" X D D(A") — X* such that D{A4) € D(A’) and the next condition
holds:

w) for the operator w : D{A) — X*, defined by w(u) = Au — Ay,
we have

ﬂ@ﬁo asu— 0, uezl,

[

for some £ > 0, where

’_ Dy . 200 _ <

Ay = tAu + (1 —t) [Aou + A'y].
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We remark that Condition w) is weaker that the conditions in terms
of derivatives in [9]. Using Condition w), it is possible to evaluate
the indices of the critical points even for operators which are defined
everywhere, but not differentiable in the usual sense. We shall formulate
the relevant assertions in Section 2.

We shall assume that the operator A’ satisfies Condition {S'), which
is given in the following definition.

DEFINITION 1.5. We say that the operator A’ satisfies Condition
(8')y if for every sequence {u;} C D(A’) such that

(1.10) u; — uo, limsup(A'u; —h,u;) <0, lim (A'u; - h,v) =0,

j—oo j—roo
for some ug € X, h € X* and any » € L, it follows that

(1.11) Ug € D(A’), A'uo = h, j]irgo(A,uj,HO} = (h, 'LJ.Q).

The main result of this paper is the evaluation of the index Ind({ 4, 0)
under the conditions A”), (§’);, w) and C) (the last condition is sat-
isfied with a special choice of the set Z.). We are going to show, under
some additional conditions, that zero is an isolated critical point of the
operator A and

(1.12) Ind(A, 0) = (1),

where v is the sum of the multiplicities of the characteristic values of
the operator T lying in the interval (0, 1).

The exact formulation of the results concerning the value of the in-
dex of the critical point is given in Section 3. In Theorem 2.1 we give
a result of the general situation of an unbounded operator A and an
unbounded linearization operator A’. More specific cases are given in
the subsequent theorems of Section 2. In Theorem 2.2 we consider the
case of a bounded operator A of type (S, )o,1. with bounded lineariza-
tion operator. The evaluation of the index for a bounded operator A
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satisfying Condition (54)p is given in Theorem 2.3. Finally, the case
of operators in Hilbert spaces is considered in Theorem 2.4.

In Section 3 we discuss a problem of bifurcation points for densely
defined operators. We consider only the case of unbounded operators
A A

The results of this work open the possibility of studying problems
of branching of solutions and the evaluation of the number of solutions
for nonlinear elliptic problems in Sobolev spaces with strong coefficient
growth. These problems can be reduced to operator equations with
unbounded densely defined operators, and cannot be studied by the
methods contained in the monograph [9]. Such a problem has been
studied by the authors in [4]. Namely, we consider there the Dirichlet
prohblem

N, “ S
(1.14) uw(z) =0, ze€dN,

where a(z) is a positive, bounded and measurable function, and §2 is
a bounded open set in R™ with boundary 89 € C2. We showed in [4]
that every eigenvalue of odd multiplicity of the linear equation

.9 Ou
;5;:{[14-0(32)]55:}*-/\1&—0, T €,

with the boundary condition (1.14} is a point of bifurcation for the
problem ((1.13),{1.14)).

2. Formulation of the main results

Let X be a real separable reflexive Banach space satisfying the fol-
lowing conditions:

X,) there exists a bounded demicontinuous operator J : B.(0) —
X*, with J{0) = 0, satisfying Condition (S,) for some r > 0;

X3) there exists a bounded linear operator K : X — X* such that
(Kz,z) > 0, for  # 0.
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Condition (S} in X) coincides with Condition (S )}y when L = X.
We also note that the condition X) is satisfied, e.g., if X, X* are
uniformly convex. In this case we can choose the operator J as in
[9). Condition X3) is satisfied if the space X is included in some real
Hilbert space H and the embedding operator X — H is continuous.

Let A: X D D(A) — X* be an operator which satisfies Conditions
A;), Ay) and is such that

(2.1) (Au,u —v) > —C(v)

holds for u, v € L, ||u|| < rp, where rg > 0 is a constant and C(v)
depends only on v.

In order to formulate the main results of the paper we introduce
certain subspaces of the spaces X, X* connected with the operators
A’ + T, T which are defined in Condition A;). We first define two in-
variant subspaces of the compact operator T : X — X. Denote by F
the direct sum of all invariant subspaces of the operator T' correspond-
ing to the characteristic values of this operator lying in the interval
(0,1). Let R be the closure of the direct sum of all those invariant sub-
spaces of the operator T not included in F. Then F and R are invariant
subspaces of the operator T and the splitting

(2.2) X=F+R

holds in the sense of a direct sum. F is a finite-dimensional subspace
of X and

(2.3) dimF = v,

where v is the same number as in (1.12).

We introduce a projection IT: X — F corresponding to the splitting
(2.2):
(2.4) {(f+r)y=f, forfeF, recR.

We define, for small enough £ > 0, the sets

Ze = ZLUZY,

(2.5) " — —
ZE = UiE[O,l] {’LL =} D(At) © Aju= 0, 0< IIUH < E},

where Ayu = tAgu + A'u, the operators Ag, A’ are defined according
to the condition w) and the set Z! is introduced in (1.6).
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THEOREM 2.1. Let A : X D D(A) — X* satisfy Conditions A;),
Az), the inequality (2.1) and be such that 0 € D(A) N Dy and A(0) =
0. Assume that there exist operators Ag: X > D(A4y) —» X*, A X D
D(A") — X* satisfying Conditions Ay), A’), (§')1, and w), and such
that the operator A + qA’ : X D D(A) — X* satisfies (S), for any
number g > 0. Suppose that the following conditions are satisfied:

1) the operator II(A’+T)~1 : X* > (A’ +T')D(A’) — X is bounded,
where the operators 11, I' are defined by (2.4) and A’), respectively;

2) Condition C) is satisfied with the set Z. defined by (2.5).

Then zero is an isolated critical point of the operator A and its
index is equal to (—1)¥, where v is the sum of the multiplicities of the
characteristic values of the operator T lying in the interval (0, 1).

We formulate below some particular cases of Theorem 2.1. In The-
orem 2.2 we assume that the operators A, A’ are bounded. Thus,
Conditions (5')z, (2.1) are automatically satisfied. Furthermore, by
changing some arguments in the proof of Theorem 2.1 we can establish
an analogous result without assuming Condition (S ), for the opera-
tor A + qA’. We also note that in this case it suffices to assume only
the first of (1.7) in Condition A').

THEOREM 2.2. Let A: X D D(A) — X* be bounded and satisfy
Conditions A1), A3). Assume that 0 € D(A) N Dy and A(0) = 0. Let
there exist bounded operators Ag : X D D(Ag) — X*, A" : X D
D(A') — X* satisfying Conditions Ap), A’) and w). Suppose that
Conditions 1) and 2) of Theorem 2.1 are satisfied. Then zero is an
isolated critical point of the operator A and its index equals (—1)¥,
with the same number v as in Theorem 2.1.

In the next theorem we assume that the operator A satisfies Condi-
tion (S;)r and both operators A, A’ are bounded. Then we can pick
the operator Ag as the operator ||ul|?Au. In this case we can assume
Condition w)} with the set

(2.6) Ze = Ucjon) {u € D(A) : Au=0, 0< |u| < g},

where A,u = tAu+(1-1)A'u and in Condition C) we can take Z, = Z..
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THEOREM 2.3. Let L be a subspace of the space X satisfying (1.1),
and let A: X D D(A) — X* be a bounded operator satisfying Con-
ditions (S4)5, A2) and such that 0 € D{A) N Ay, A(0) = 0. Assume
that there exists a bounded operator A’ : X O D(A') — X* satisfying
Condition A’) and such that Conditions w) and C) are also satisfied
with the set Z. defined by {2.6). Suppose that Condition 1) of Theorem
2.1 is satisfled. Then zero is an isolated critical point of the operator
A and its index equals (—1)”, where v is as in Theorem 2.1.

Finally, we state one result for the special case of a Hilbert space
H in place of X. For simplicity, we consider only bounded operators
A, A'. We use the following assumption: there exists a positive con-
stant ¢ such that

(2.7) (A" + Dyu, u) > cf|ul®

holds for all u € H, where the brackets denote now the scalar product
of the space H.

THEOREM 2.4. Let H be a real separable Hilbert space and A : H O
D(A) — H a bounded operator satisfying Conditions (S;)., 4s), 0 ¢
D(A) N Dy and A(0) = 0. Assume that there exist a bounded linear
operator A' : H — H and a compact linear operator I' : H — H such
that the inequality (2.7) holds. Assume, further, that Condition w) is
satisfied with Z. = Z., where Z, is defined by (2.6). Suppose that the
equation A'u = 0 has only the zero solution. Then zero is an isolated
critical point of the operator A and its index equals (—1)¥, where v is
as in Theorem 2.1.

REMARK 2.1. It is easy to verify that in the case of a bounded op-
erator A’, as in Theorems 2.2-2.4, we can assume instead on Condition
w) a weaker condition: in Condition w) we replace ||u| = w(u) — 0 by
lull ~*w(u) — 0.

REMARK 2.2. Theorems 2.3, 2.4 are also new even for operators
which satisfy Condition (S}, are defined everywhere in a neighborhood
of the critical point and have no derivatives in the usual sense.
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3. Branching of solutions

In this section we present an application of the previous results to the
bifurcation problem. In what follows, Dy is an open set containing the
origin in a separable reflexive Banach space X. We consider a nonlinear
operator A : X D D(A) — X* satislying Conditions (S;)r, A2),
for some subspace L of X such that Do N L C D(A), L = X. Let
C : Dy — X* be a nonlinear compact operator. Assume further that
A(0) = C(0) = 0. We can easily verify that the operator A + AC
satisfies Condition (54 ) for any real A > 0.

We consider the bifurcation problem for the pair of operators A, C.

DeFINITION 3.1. A real number Ap is called a “bifurcation point”
of the operators A, C if for every ¢ > 0 there exist u, € D{A) and
A: € R such that

(1)  Auc+ACuc =0, [A—dof<e, 0<llucl <e

We study necessary and sufficient conditions that Ag be a bifurcation
point. For this, we may assume that there is some § > 0 such that zero
is an isolated critical point of the operator A+ AC, for each A from the
interval |A — Ag| < 6, since otherwise Ag itself would be a bifurcation
point. Thus, the index Ind(A + AC, 0} of the operator A + AC at 0 is
defined for |A — Ag| < & according to Definition 1.4.

Let
(3.2)

i+(Xo) = limsupInd(A + AC,0), i%(\g) = liminf Ind{4 + AC, 0).
Aot A=rdot

TBEOREM 3.1. Let A: X O D(A) — X* be a nonlinear operator
satisfying Conditions (54), A2) and let C : Dy — X* be a nonlinear
compact operator. Assume that A(0) = C{0) = 0 and that at least two
of the numbers

(33) i—(}‘O)a i+(A0),Em(Ag), E“}‘(’\0): Il’ld(A-{-)\oc,O)

are distinct. Then Ay is a bifurcation point of the pair A, C.
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Now, we are going to establish necessary conditions for a number Ag
to be a bifurcation point. We need to state new forms of Conditions
w), C) from section 1 so that they can be used in both necessary and
sufficient conditions.

Assume that the operator C has Fréchet derivative at zero denoted
by C’. The operator C’ is compact [5]. We assume that there exist a
nonlinear operator Ap satisfying Condition Ap) and a linear operator
A': X D D(A") — X* such that D(A) C D(A’) and the condition

w) for the operator w : D(A4) — X*, defined by w{u) = Au — A'u,

we have
w(u)

_——
[l

holds for every A > 0 and some ¢ > 0 depending on A, where

0, asu—0,ueZ,,

(34)  ZLn = U {u e D(AY) : A (w) =0, 0< JJu| < e} :

Alga
Here,
A (u) = t(Au+ ACu) + (1 — £)(Agu + A'u+ AC'u).

Define the sets Ze a = Z[ p U 2, with
(3.5)  Zia = Ueeron {’“ e D(AY) + AZ(w) =0, 0< Jlu] < E}:

where
A (u) = tAgu + A'u + AC'w.

We also introduce the condition

() the weak closure of the set

(3.6) OeA = {v = -”-Z—ﬂ P u€ Ze,)\}

does not contain zero for any A > 0 and all sufficiently small positive
e depending on A.
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THEOREM 3.2. Let A, C satisfy the conditions of Theorem 3.1 and
let C' be the Fréchet derivative of the operator C at zero. Assume that
there exist an operator Ag : X O D(Ag) —» X™ and a linear operator
A" X D D(A") — X* satisfying Conditions Ap) and (S');,, respec-
tively, as well as conditions &} and C). Then a necessary condition
that Ag be a bifurcation point of the pair A, C is that the equation

(3.7) Alu+2C'u=0

has a nonzero solution.

A sufficient condition that Ag be a bifurcation point is given in the
following theorem.

THEOREM 3.3. Assume that X is a real reflexive separable Banach
space satisfying Conditions X)) and X3) of Section 2. Let A, C satisfy
all the assumptions of Theorem 3.2, respectively, and be such that (2.1)
is satisfied and A + qA’ satisfies Condition (Sy);, for every number
q > 0. Suppose that (A'u,u) > 0 for all w € D(A’) with u # 0 and
that the operator T = —(A)"1C’' : X — X is well defined, compact
and Condition 1) of Theorem 2.1 is satisfied with I' = 0. Then each
characteristic value of odd multiplicity of the operator T is a bifurcation
point of the pair A, C.

REMARK 3.1. For a bounded operator A, or in the case of a Hilbert
space X, the restrictions on the operator A in Theorems 3.2 and 3.3
can be weakened according to Theorem 2.4.

REMARK 3.2. The conditions of Theorem 3.2 guarantee that the set
of bifurcation points of the pair A, C is discrete. In general, this set
can contain entire intervals of the real line. For an operator A defined
everywhere, such an example can be found in [9, p. 63].
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