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DEGENERATE VOLTERRA EQUATIONS
IN BANACH SPACES

ANGELO FavInt AND HIROKI TANABE

ABSTRACT. This paper is concerned with degenerate Volterra equa-
tions Mu(e} + f; k(t — s)Lu{s)ds = f(t) in Banach spaces both in
the hyperbolic case, and the parabolic one. The key assumption is
played by the representation of the underlying space X as a direct
sum X = N{T) @ R(T), where T is the bounded linear operator
T = ML-'. Hyperbolicity means that the part T of T in W)_ is
an abstract potential operator, i.e., =1~} generates a Cj-semigroup,
and parabolicity means that —7~! generates an analytic semigroup.
A maximal regularity result is obtained for parabolic equations. We
will also investigate the cases where the kernel k(') is degenerate or
singular at ¢ = 0 using the results of Priiss [8} on analytic resolvents.
Finally, we consider the case where A is a pole for (AL + M)™L.

This paper is concerned with the unique solvability of the following
Volterra integral equations

(1) Muf(t) + /Ot k(t —s)Lu(s)ds = f(t), te€][0,7]

in a Banach space X. Only an outline is presented here, and the details
will be published elsewhere.

Let M and L be closed linear operators such that D(L) C D(M) and
0 € p(L). The kernel k() is a numerical function defined in the closed
interval [0, 7]. In case k(t) = 1 we get by formally differentiating (1)

%Mu(t) +Lu(t) = f(t), telo,]
Mu(0) = £{0).
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This type of (possibly degenerate) equations is discussed in detail in the
book of A. Favini and A. Yagi [3].

We consider the following two cases.
Hyperbolic case There exists a constant K such that

_ K
(2) || (M(sM + L) 1)’°||gE Vs>0, k=12....
Parabolic case There exists a constant K such that
MMM+ L)Y €« ——, ReA>0.
© 192 + L) € gy Red 2

In view of our assumptions, T = M L™! is a bounded linear operator in
X. The following facts are established in A. Favini [2] and A. Favini and
A. Yagi [3]. Under the assumption (2) or (3}, X has a direct decompo-
sition representation X = N(T) @ R(T). Let T denote the restriction of
T to R(T). If X is reflexive and (2) is satisfied, then —T~? generates a
Cy-semigroup. If X is reflexive and (3) is satisfied, then —T1 generates
an analytic semigroup.

We make the change of the unknown function v(t) = Lu(t). Then,
since Mu(t) = ML~ 'v(t) = Tw(t), the equation (1) is transformed into

(4) Tu(t) + j‘; k(t — s)v(s)ds = f(t).

Let P be the projection onto N(T') along R{T'). Then equation (4) splits
into the two equations

(5)  T(1—P(t)+ /0 k(t — 5)(1 - P)u(s)ds = (1 — P)f(t),

(6) /0 k(t — s)Pu(s)ds = Pf(t),

since PT = TP = 0. (5) is a Volterra equation of the second kind, and
(6) is a Volterra equation of the first kind.

Another change of the unknown variable w(t) = T(1 — P)u(t) trans-
forms the equation (5) into the equation

s w(t) + /ﬂ k(t — s)T"w(s)ds = (1 — P)f(H).
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Formally differenting both sides of (7), we arrive at the following initial
value problem

(8) w(t) + k(O)T 'w(t) + ‘/D.tfc:(t — )T w(s)ds = (1 — P)f(t),

© w(0) = (1 - P)f(0).

Also by formal differentiation, the equation {6) is transformed into

(10) k(0)Pu(t) + fot k(t — s)Pu(s)ds = Pf(t).

We try to solve the original equation (1) by solving the problems (8),
(9) and (10).

We denote by AC([0, 7)) and BV/(]0, 7]) the set of absolutely contin-
uous functions in [0, 7] and the set of functions of bounded variation in
[0, 7], respectively.

Hyperbolic case

THEOREM 1. Let X be a reflexive Banach space and let (2) be sat-
isfied. If k € AC([0,7]),k € BV([0,7]),k(0) > 0, f € W2X0,7; X) and
f(0) € R(T), then the solution u(-) € C([0,7]; D(L)) of problem (1)

exists and is unique.

Proof. The problem (8) and (9) can be solved by applying the fol-
lowing result of E. Sinestrari [9: Theorem 3.1]. O

LEMMA 1. Let A be a Hille-Yosida operator in X and let B be a
linear closed operator with D(A) ¢ D(B). Ifb € BV([0,7]), then for
any zy € D(A) and f € W0, 7; X) such that Azy+ f(0) € D(A) the
integrodifferential problem

%:c(t) = Az(t) + /0 bt — 5)Ba(s)ds + f(£), 0<t<T,
(0} = xp

has a unique solution z(-) € C([0,7]; D(4)) N C*([0, 7); X).
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By the assumption of the theorem (1 — P)f(0) = f(0) € R(T) =
D(=T-") and D(—T"") is dense in R(T). Hence the above result of
Sinestrari can be applied to the problem (8) and (9), and there exists
a unique solution w such that w € C* {[0,7] ;R(T)) and T' w €
C([0,7] ; R(T)). 1t is easy to show that the solution of (8) and (9) satis-
fies (7). The equation (10) can be solved by Neumann series expansion.
Integrating (10) and using the hypothesis P f(0) = 0, we can show that
the solution of {10} satisfies (6).

EXAMPLE 1. Let L = —A,D(L) = H* Q) n H}{Q), X = L¥Q),
where 1 is a bounded domain in RB® with smooth boundary, and M
be the multiplication operator by a nonnegative superharmonic function
m € C?(Q). Then integration by parts yields for u € D(L)

1
eRe/.muAﬁd:c= ——/Am- |u|2d:c+]m|Vu|2dx20,
0 2/ Q

from which it follows that the condition (2) is satisfied with K = 1.

Pararbolic case

THEOREM 2. Let X be a reflexive Banach space and let L, M be
two closed linear operators in X satisfving (3). Let v > 0 be fixed
and assume that k € C**([0, 7)), (0) > 0 for some a > 0. If f(-) €
CY([0,7]; X),0 < 8 < 1, and f(0) € R(T), T = ML™", then (1) has a
unique solution u(-) € C((O 7], D{L)) N C([0, 7]; X') which satisfies the
equation in the following sense: |, * k(t — s) Lu(s)ds is uniformly bounded
in 0 < e <t <, the improper integral

t t
(11) / k(t - )Lu(s)ds =lim [ k(t — s)Lu(s)ds
+0 = e

exists and (1) holds with the integral in the left hand side understood in
the improper sense (11). Furthermore u satisfies the additional regularity
condition Mu € C'(]0,7]; X). If in addition f(0) € R(T), T = ML™!
then u Is a strict solution belonging to C([0, 7}; D(L)) with the regularity
property Mu € C'({0,7); X).

Proof. The result of J. Priiss [6] is applied to the formally differenti-
ated problem (8} and (9). In the present case, the initial value f(0) is an
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arbitrary element of R(T). Therefore, T‘lw(s) is not Bochner integrable
near s = { in general; however, the improper integral

(12) t k(t - $)T 'w(s)ds = 11_13& /tk(t — )T w(s)ds

+0

exists, and it can be shown that (8) holds with the integral in the left
hand side replaced by (12). O

EXAMPLE 2. Let X = H™'(Q), D(L) = Hj(Q), Lu = —Au, M is the
multiplication operator by a nonnegative function in C(£2), where ) is a
bounded domain in R™ with smooth boundary. Then it has been proven
by Favini and Yagi (3] that assumption (3) holds.

EXAMPLE 3. Let X — HYQ), D(M) = HM:Q), Mu — —Aw, and
D(L) = H3(Q) N HEQ), Lu = A%y, where Q is a bounded domain in
R" with smooth boundary. Let

Ou dv Fu 821)
= d =
(w, v): /Zax“a T; (W)= /Z 8z;x; Oz 3:3

be the inner product in H}{2) and HE(S?), respectively. Following the
idea of W. M. Greenlee[5], we consider the operator .4 defined by

(u,v)2 = (Au,v), for every v € HI(Q).

A is a positive definite selfadjoint operator in H}(2) and L = MA.
Therefore we have

MM + LY gy = IM(A+ A7 M| go-vay < Cop(1+ A7

for any sector {A;|arg Al < 4}, g < By < .

REMARK 1. The operator A in Example 3 is characterized as
D(A) = H* ()N HZQ), Au= —~Au+h, Ah=0in, h = Auv on 5.

A related open problem is “Does the operator —A,, 1 < p < oo, defined
by

D(A,) = W*(Q)NWZP(Q), Apu = ~Au+th, Ah =0inQ, k= Au on 9
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generate an analytic semigroup in W, (Q)?” It can be shown that the
question is affirmative in case n = 1 with the aid of the explicite expres-
sion of the solution to

Au+iu=f
which takes the form if @ = (0,1)

—u"(z) + h({z) + du(z) = f(z), 0<z <1,

(13) u(0) = v/(0) = u(1) ='(1) = 0,

where f is a given element of W,7(0,1) and A{z) = az + b with a and
b to be determined so that A(0) = »”(0), h(1) = «"(1). The solution of
(13) is given by

u(z) = _51\/-‘)? /0“ e ay + b — f(y))dy

L e _
ﬁ/ze P ay +b - fly))dy,
_ A Y A Lo
a—z—\/X—zfrﬁ—\/‘e— fe fly)dy —e fe fwdy},

_ o) 1-vA -y
b_l——e"/x{Q—\/_ 23*/_ \/_6 -/ f)y

_J5 _
PR GRS ) I G T
2 VA=2eA—VxeV* Sy .

Next result is concerned with the maximal regularity.

THEOREM 3. Let L, M be two closed linear operators acting in a
reflexive Banach space X and satisfying (3). Suppose k(-) € C12([0, 7])
for some o > 0 and k(0) > 0. If f(:) € CY([0,7]; X) and f(0) €
R(T?), f(0) € R(T), T = ML™", then problem (1) has a strict solution
u(-) such that Mu(.) € C*2({0,7]; X) and Lu(-) € C*([0, 1]; X).

Proof. Under the assumption of the theorem we have
(1 — P)f(0) - k(0)T*£(0) € R(T) C D_j.1(ax, 00).

Hence the conclusion follows from Theorem 4.5 of E. Sinestrari [8].
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Next, we consider the case where k satisfies the following hypotheses:

(14) k € AC([0,7]), k € BV(I0,7]), k(0) > 0. O

THEOREM 4. Let X be a reflexive Banach space and let M, L be
two closed linear operators in X satisfying (3). Suppose that (14) is

satisfied. Then for each function f satsifying f € AC([0,7);X), f €

BV([0,7]; X), and f(0) € R(T), there exists a function u(-) having the
following properties:

u is strongly measurable in10,7{, u(t) € D(M) for every
te0,7], Mue C([0,7); X), u(t) € D(L) a.e. in [0,7],
Mu is differentiable a.e. the functions tdMu(t)/dt, tLu(t)
belong to L*=(0,T; X),

t
f k(t — s)Lu(s)ds is uniformly bounded in0 < e <t <,

and the improper integral
t

(15) ll_r'r& /: k(t — s)Lu(s)ds = L k(t — s)Lu(s)ds

0
exists, the equation (1) holds with the integral of the left

hand side replaced by the the improper integral (15).

Furthermore the function u which has the above properties is uniquely
determined by the right hand side f(-} of (1).

This theorem is proved by applying the following proposition to equa-
tion (7).

PROPOSITION 1. Suppose that A is a closed linear operator with dense
domain D(A) such that —A generates the analytic semigroup e ™ in a
Banach space X, and

ke AC([0,7)), k € BV([0,7]), k(D) >0,
f e AC([0,7); X), f e BV([0,7); X), 0 < 7 < oo.
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Then a solution u(-) of the integral equation

t
(16) u(t) +] k(t — s)Au(s)ds = f(t), 0<t <,
0
with the following properties exists and is unique:
u(-) € C([0,7]; X), u(t) € D(A) a.e., u(-) is differentiable a.e.,
the functions tAu(t) and tdu(t)/dt belongs to L>*(i0,7]; X),
¢
f k(t — s)Au(s)ds is uniformly bounded for 0 < e <t < T,
the limit

(17) / k(t — s)Au(s)ds = l:_rgf k(t — s)Au(s)ds

+0
exists, and equation (16) is satisfied with the integral of

the left hand side replaced by the improper integral (17).

Proof. Following the idea of Crandall and Nohel [1] the equation (16)
is transformed into the initial value problem

(18) %u(t) + k(0)Au(t) = Gu)(t), 0<t<7, u(0)=f(0),
where
(19)  G)(t) = f(B) + (r x /)(t) +7(8) F(0) — r(O)ult) — (u*7)(2),
and r is the solution of the integral equation

k+k(O)r+k*r=0.

Problem (18) is further transformed into the integral equation
t
(20) u(t) = e O1£(0) + / e~ (=R 0AG () (s)ds.
0

Equation (20) can be solved by successive approximation, and there
exists a unique solution v € C([0, 7]; X). Let

g(t) = f(&) + (r = f)(E) +7(£) S (0).
Since ¢(-) is of bounded variation, by an elementary integral calculus

it can be shown that j;)t e~ (=904 g(5)ds is differentiable almost every-
where, and we have
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d
dt f,

t
_ / e~ g5} 4 e~HDg(0)
0

14
e—(t—s]k(O)Ag(S) ds

t
=g(t) - k(O)Af e~ =046 ds.
0

Since u(-) is Holder continuous, or rather by a direct use of the equation
(20) itself, one can easily show that

1
/e‘(t’s)"(o)Ar(O)u(s)ds
0

is differentiable with bounded derivative. Noting that

t £ t
] eSOy 1 7)(5)ds = / / MOy (5 oVdsdr(o),
0 0 J¢

we see that [ e ("*OA(y « 7)(s)ds is differentiable. Combining these
and the equation (20), we conclude that u(-) is differentiable and satisfies
(18) almost everywhere. Integrating (18) from ¢ to ¢ yields

u(t) — u(e) + k(0) / Au(s)ds = / G (u)(s)ds.

This shows that | * Au(s)ds is uniformly bounded and the limit

t

lim k(0) f ' Au(s)ds = k(0) / Au(s)ds = /0 Glu)(s)ds — u(t) + £(0)

-+

exists. Integrating by parts yields

/ﬁ k(= ) Au(s)ds — / k(e s)a% f " Au(o)dods

~ £{(0) / ' Au(o)do + / b —s) ] " hu(o)dods.

Hence (17) of the statement of the proposition follows. The details of
the proof are carried out by the method of H. Tanabe [10], [11] O
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REMARK 2. The equation (1) is the integrated version of the formally
differentiated problem

{21) %Mu(t) + k(0)Lu(t) +/r; k(t — s}Lu(s)ds = f(t),

(22) lim (Mu)(2) = f(0),

which is the special case of the integrodifferential equation with L; such

that D(L,) D D(L) in place of L in the integral of the left hand side of
(21). Under the assumptions of Theorem 4, (21) holds with the integral
of the left hand side understood in the improper sense:

/t E(t — s)Lu(s)ds = 16138 ti%:(t — s)Lu(s)ds

] €

as is shown in what follows. It suffices to show that fio k(t — s)Lu(s)ds
is differentiable and

t

(23) %/ k(t — s)Lu(s)ds = k(0)Lu(t) + .[ro k(t — s)Lu(s)ds.

+0

By Fubini's theorem and integration by parts,
]6 t / " k(o — s)Lu(s) dsdyr(t — o)
_ f t / o — $)dor(t — o) Luls) ds
_ [ { [kt = s)rt — )] - [ k(o — s)r(t - o)dcr} Lu(s) ds
_ [ {k(t — $)r(0) = k(O)r(t —5) = (b 7)(t — )} Ln(s) ds
- / t {k(t — 5)r(0) + bt — )} Lu(s) ds
— r(0) f 'kt — s)Lu(s) ds + / it — ) Lu(s) ds.
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Hence f k(t —~ s)Lu(s)ds is uniformly bounded and the limit
f 0 k(t — s)Lu(s)ds exists with

//;0 (o0 — s)Lu(s)dsd,r(t — o)
_r(o)f+U k(t — s)Lu(s) ds+/k(t_S)Lu()d

Letting e — 0 in

ft’k(t' — s}Lu(s)ds —f k(t — s)Lu(s) ds

/tl / k(o — s)Lu(s) dsdo
= /t {k(O)Lu(o*) ff k(o — s)Lu(s) ds} do,

tl

we get

t

k(' — s)Lu(s) ds — / k(t — s)Lu(s) ds

+0 +0

= /;f {k(O)Lu(a) + /:; fc(a - §)Lu(s) ds} do

for 0 < t < t'. This shows that (23) is true.

Case where k(0)=0 or k is singular at t =0

Suppose that k(-) is Laplace transformable, its Laplace transform l;'(/\)
has a meromorphic extenstion to the sector

2(0,90+g) = {Ne Cilag) <90+g}

and fc()\) £0forAe X (O, 6y + —g—) for some 8, € ]0, g] Suppose also
that there exists an angle 6, € ]g, w[ such that
i L{(zM + L)™|| < const for any z € £ = {0} U E(0,8,),

1
mexforall/\EE(O 90+2)
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Then we can apply the result on analytic resolvents of J. Priiss [7: The-
orem 2.1] to solve the integral equation (5). Equation (6) has a unique
solution given by

Pu(t) = /[; w(t — s)(Pf)(s)ds

for any f such that Pf € C! ([O,T];N(T)), Pf(0) = 0, where w is the

inverse Laplace transform of 1/Xk(}).

t—a—l

(—a)T(a+ 1)

EXAMPLE 4. Let k(t) = t*, —1 < a < 0. Thenw(t) = T

Case of A =0 is a pole for (AL + M)~}

Here X is a complex Banach space, not necessarily reflexive. Suppose
that A = 0 is a pole for the resolvent of T = M L~!. Then R(T) is closed
and X has the direct decomposition representation X = N(T") & R(T).
Since 7! is bounded in this case, we can easily establish the following
results.

THEOREM 5. Let z = 0 be a simple pole for the resolvent of ML™!.
Ifk € C'([0,7]), k(0) > 0, and f € C*{[0,7); X), f(0) € R(T), then (1)
has a unique strict solution.

THEOREM 6. Let A = 0 be a simple pole for (\+ 7)™\, T = ML~
Let k € L}, ([0, co[}, with 1/(Ak(A)) = &,w € L}, ([0, 00(). Then, for all
f e CY([0.7]; X), f(0) € R(T), problem (1) has a strict solution.

THEOREM 7. Let A = 0 be a simple pole for (A\+T)™}, T = ML, Let
k € Li,.([0,00{) NC™([0, 7]) NC™* ((0,7]), K90} = 0,5 =0,1, ... ,m,
me N U{0}. If f € CU"D([0,7]; X), PF(0) =0, = 0,1,... ,m+1,
then problem (P) has a strict solution provided that 1/(A™2k())) is the
Laplace transform of a function in L} (0, 00).

Examples of the case where A = 0 is a simple pole for (AL + M)~! are
found in section 5 of A. Favini, L. Pandolfi and H. Tanabe[4]. Analogous
results also hold in the case of multiple pole.
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