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STANDING WAVE SOLUTIONS FOR THE
PLANER CHERN-SIMONS GAUGED NONLINEAR
SCHRODINGER EQUATION WITH AN
EXTERNAL ELECTROMAGNETIC FIELD

KAZUHIRO KURATA

ABSTRACT. In this paper we construct a standing solitary wave
solution with prescribed total electric charge to the planer Chern-
Simons gauged nonlinear Schrédinger equation with an external elec-
tromagnetic field by using a variational method.

1. Iniroduction and main result

The Chern-Simons theories exist in three-dimensional space-time and
believed to be relevant to quantum Hall effect and high-T. superconduc-
tivity(see, e.g., [13], [7] and the references cited therein). The dynamics
of the planer nonrelativistic Chern-Simons model is governed by the fol-
lowing gauged nonlinear Schrédinger equation ([11]):

(1) Db = —3 D% — gyl in B2 x (~o0,+00),

where 7 is a scalar field, D, = 8, + 14" +4iV,,D = ¥V — iA — iA, with
1

®  Aw) - AW =1 [ G-l

() At — AWzt = j Glz —v) - §(u, ) dy
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and

(4) plz,t) = [(z, )%, j(y,t) = Im(4' D).
Here g > 0 and k > 0 are positive constants, 9* is the complex conjugate

of i, Dy = V—iA, V(x) and A, are external electromagnetic potentials,
and G(z) is defined by

Glo) = (C'(a), ), G = 5-€7;logle),

where € is the totally skew-symmetric tensor with €!2 = 1. Namely,

1 L2 2 T1
¢ (o) 27|z’ (=) 2m|z|?
Note that for a function p with a nice decay property,
B =V x A(¢) = 05, A°(¢) - 05, A'(9) = —x"p

holds. The equation (1) comes from the Euler-Lagrange equation of the
Lagrangian density:

K . 1
L= Zeaﬁ"AQFgﬂ, + " Dyp — §[D¢|2 + %Id)l‘l

under the relativistic notation with the background Minkowski metric
(g,.) = diag(1, —1, —1), where Fj, = dzA, — 8,4, and €77 is the totally
skew-symmetric tensor with €12 = 1. See [13] for more details on this
non-relativistic Chern-Simons model.

Throughout this paper, we also use the following notations:

D, =V-iA,, Dy=V—iA, A,= (Al 4, B.=8,Al-8,A.
We study a standing wave solution to (1). Hence, substituting ¢ (z,t) =

e *tp(x), we obtain the time-independent equation for static solution

¢:

1
(3) —D% + A+ Vep — gl¢[*¢ = Eo,
where A and A° are defined by (2)-(3) with
(6) p(z) = lg(x)l?, j(z) = Im(¢"Dg).

The static solutions to (1) without external electromagnetic fields was
studied on the self-dual case, namely g = 1/x( see [11]). The speciality
of the self-dual case comes from the identity (see [13]):

IDg|* = |(Dy — iD2)@f* ~ (B + Be)p + V % j).
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The energy function for static solutions is written by

1 N o[
J(¢)—4/RZID¢| dw+2L2ve|¢|2dx 4jml¢l d.

Then, we can write J{(¢) as

19 = [ (101=iDieP —tg= D) o [ GV jBNo

where we used V x A(¢) = —kp = —x|¢|> and [p, V x jdz is dropped
with the hypothesis that j decays sufficiently at infinity, e.g., |i{z)| <
Cz)"1+® for some § > 0. So, if there exists no external field and
g < 1/k, then the minimal energy configuration is only a trivial one
¢ = 0. On the other hand, in the self-dual case g = 1/x, the energy
minimizing configuration requires ¢ to satisfy

(D) — iDs)¢p = 0

with V x A(¢) = —«|#|%. It is known there are non-trivial zero-energy
self-dual solutions which are explicitly solved (see 11, 13]).
By the continuity equation 8,p + V - j =0, it follows that

d
-_— t = .
o Rzp(cv, )dz =0

Hence, the total electric charge [ {1(x,t)|* dzx is conserved in this model.
So, it is natural to consider under the constraint

(7) fR I(a)[* dz = N.

The purpose of this paper is to construct standing wave solutions with
prescribed total electric charge [ [¢]*dz = N under certain external
electromagnetic fields V, and A, not necessary in the self-dual case, by
using a variational method.

First we note that by its definition A = A(¢) satisfies

(8) V.A($) =0

in the distribution sense. Under the constraint (7} and the hypothesis
of nice decay of functions p and j, it follows

I i) = —eIFIN
(9) lI|l—Igo |1 A (z) ot BN,
(10) lim A%z) = 0,

| —eco
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where 27 = z//|z|. For external electromagnetic fields V (z) and A,
throughout this paper, we assume

(11) Viz) > —a, A.€C!, B,(z)<0

for some positive constant a. We denote by X the completion of C§°(R?)
with respect to the norm

6 = [ (D + (V-0 + DIoP) do

Note that since it is known the pointwise inequality( see, e.g., [19])
(12) [V|gi(z)] < |Deé(x)| ae. =,
¢ € X implies that |@| belongs to the usual Sobolev space H'(R?) be-
cause of the assumption (11). We consider the energy

1 1
9 J@=; [ Dopar+) [ visras—1 [ e

4 Jr2 2 Jp2 4 Jr2
and consider the minimizing problem

(14) L = inf J(¢),

PEAN
where

Ay = {q&eX;fR2|q5E2da:=N}.

We denote by Cj the best constant of the Gagliardo-Nirenberg inequal-
ity:
(15) iz < Collull3) Vuliz

for real-valued u € H(R?), where ||ull, = ||ulizxrez for 1 < p < +c0.
We state our result.

THEOREM 1. Fix N > 0. Assume (11) and either

(a) Assume gCoN < 1 and limy s (Ve(z) — Be(z)) = +o0
or

(b) gk < 1 and limjy_ (Ve(z) — (g&/2}B.(z)) = +00.
Then there exists a minimizer ¢ € Ay to %.

We do not know uniqueness of the minimizer ¢ € Ay for a fixed V.
The following proposition yields the existence of the standing solitary
wave solution to (1).

THEOREM 2. Let ¢ € Ay be a minimizer to ¥. Then,
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(a) ¢ satisfies for some E € R the equation (5);

(b) ¢ is Holder continuous function and satisfies |¢(z)| — 0 as |z| —

00;
(c) ¢ satisfies the following formulas:

f Bdz = —N/k,
R?

. 1 ...
lim |zA{(¢)(z) = ——€ 2N
Jim_|2{A(@)(z) = 5 TN,
where 2; = z,/|z|.

The first formula in Theorem 2 (c) is relevant in this model. It says
that total magnetic Alux is comparable to the total electric charge.

For the self-dual case, in (6], [12] some time-dependent soliton solu-
tions was constructed in the presence of an external harmonic force i.e.
V.(z) = w|z|? for some constant w > 0) or an external constant magnetci
field B, by using static solutions and special transformations.

For general case (not necessary the self-dual case) with no exter-
nal field, Berge-de Bouard-Saut studied in [6] the existence of time-
dependent solution to (1) locally and globally in time and blow-up phe-
nomenon in certain cases. Among them, they showed global existence of
H! solution in time to (1) with initial data 4 satisfying |[+4||2 < 1/9C)
which is the same condition as the case (a) in Theorem 1.

However, so far there seems no work dealing with existence of stand-
ing solitary wave solutions with prescribed total electric charge under
external fields even for the self-dual case, as far as I know.

REMARK 1. The assumptions on the growth of external fields in The-
orem 1 can be relaxed slightly (see, e.g., [3]}. Because this assumption is
used only to assure compactness property for a bounded sequence of X.
Moreover, we can allow degenerately growing potentials, i.e. potentials
which do not tend to infinity in all direction as |z| — oo, if we use the
inequality as in [20, 21] { see also [16, 17]).

REMARK 2. In this paper, I have not tried to obtain the global bound-
edness and its decay property of [j{z)]. If one know its global bounded-
ness and L! integrability or Li-integrability of |D¢|, then one can show
A%z) — 0 as |z| — oo and an exponential decay property for |¢| by
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the standard subsolution estimate and the comparison argument. More-
over, that would also implies an exponential decay property of |j(z)|.
This should be treated rigorously in the future.

Throughout this paper the integration is understood over R2.

2. Proof of Theorem 1

To show Theorem 1, first we collect and prepare several inequalities.
For r > 1, define the fractional integral operator I,:

ne = [ oy

The following inequality is well-known as Hardy-Littlewood-Sobolev’s
inequality. See, e.g., [So, Theorem 0.3.2] for its proof.

LEMMA 1. Supposer > 1,1 <p < ¢ < +oo and1/r =1—(1/p—1/q).
Then there exists a constant C depending only on p and q such that

I fllq < CllAMp-

LEMMA 2. Assume A, € C', By(z) < 0 and let ¢ € X. Then we have

1
(16) ”H +1612la < Cullol2/5:
(17) l6ll¢ < Coll6l2IDeall%
2 _ 2 .
(18) fR D4 do > fR (~B.)lgPdz;

Proof. (16) is a consequence of Lemma 1. (17) is a consequence of the
Gagliardo-Nirenberg inequality and pointwise estimate (12). (18) is due
to (1, Theorem 2.9]. O

LEMMA 3. Assume A, € C',B(z) < 0 and let ¢ € X. Then for
A(¢) we have following inequalities:

09) 1A@IE < (s ) Tollele, TA@IE < (o Hotilels
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(20) 1A(¢1) — A(d2)lls < Clmax{llnllx, Igallx)lld1 — all2;
(21) Ills < Coll$l21DSII3;

(22) fR D[ dz > fR (-—Be +- %E) |o1% da.

Proof. By Holder’s inequality we have ||¢||2 72 < liollaliglia. By using
the definition of A(¢) and Lemma 2 we obtain the estimate for ||A(¢)|ls.
The estimate for ||A(¢)d||2 follows from Hoélder’s inequality. The proof
of (21) is the same as in (17), since we know (12) also holds since A(¢) €
L*(R?). Note that

1 1 2 2
1460 - Al < 7l [ o=llonPw) - (6Ll dul

< cué*nm—|¢2||(|¢1|+1¢2|>n4
< Cl(éil — 1éa) (] + loaDiase
< Cllgr — ¢allsa(ll @t llssz + ed2llsss)-

By using Hélder’s inequality and Lemma 2, we have ||¢g1 — ¢oflsz <

Cllgr — Gall¥* 11 — ¢2lly” and (14l < Cllsllx, 5 = 1,2. Thus we ob-
tain the estimate (20). To show (22), first we take a sequence n; €
Ce(R?) such that n; — |¢| in HY(R?). Let A; = (1/x) [ Gz —
y)n;(y) dy for each 7 =1,2,---. Then A; € C'. Hence, by Lemma 2 we
have

2
. U5
[ —iajetay > [(-B.+Dyjopay
Now it is easy to see from Gagliardo-Nirenberg inequality and (20) that

[t~ [ioray
[1D.—inpopay — [ 1D, - iaw@)srdy
Thus we complete the proof of (22). O

Although we do not know whether the weak lower semicontinuity of
J(#) on X holds or not, we have the following lemma which plays an
important role in the proof of Theorem 1.



084 Kazuhiro Kurata

LEMMA 4. Assume ¢; € X converges to ¢ € X weakly in X and
strongly in L*(R*) n L? (RQ) Then the lower semwontmuzty of J(¢):

(23) J(¢) < lim klllgo J(¢;) =

holds.
Proof. First note that

f (D, — iA(¢,));* du

- f D62 dz — i f A(6))(6; - (Dedy)” — & - Do) d + f A ()51 da.
We have
[ (A(6))d; — A()8) - (Dedy)'| da

f (6, — )A(;) - (Deds) | do + f I6(A(8,) — A()) - (Dety)"| do
< AW lald; — 6llIDedyllz + IAL5) — A lallgllalDet o
< Cllé; — bl +Clid; — dll2 — 0.
By the weak convergence in X, we also have
/ A(9)é - (Dogy)" dz — f A($)é - (D.g)" dz
Hence, it follows that
(24) f A(6,)8; - (Do) dz — ] A(#) - (D) de.

In a similar way, we also obtain
[ 101z - / |A(6)6f dz)

/ A(0,)6; — AB)S(1A(S)5] + |AD))) da

A(;)¢; - (¢)¢||a(lIA(¢J)¢;l|z+ | A($)6ll2)
C(I|A(D5)(¢5 — D)ll2 + (A(S7) — Al))¢ll2)

Here we used (20) and the boundedness of ¢j in X. It is easy to see

JIE [0t

These and weak convergence in X imply the desired estimate (23). O

IA

A

A IA
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Proof of Theorem 1. First, we consider the case {a). We note that, by
(21) it follows that

Jw) 2 (0= gCu) [ Do+ [Vilof ds

on Ay. Take a minimizing sequence ¢; € Ay, that is
J{(¢;) — &, flqu[? dz = N.
By the assumption gCyN < 1 we obtain
/ID%F + Vel@[* dz < C
for some constant C. By using (22) and the definition of A we have

[spas> [istae - [ Bisan,

and hence we also obtain the boundedness of {||¢;{{s} by the assumption
B, < 0. Since |D.¢;|?> < 2(|D¢;|* + 2|A(¢;)¢;)%, it follows from (19) and
[¢;1*dz = N that

f ID.o, 2 de < 2 f D2 dr + 2 f A(d;)652dx < C

for some constant C'. Therefore, {¢;} is a bounded sequence in X, and
hence we can take a subsequence ¢, and ¢ € X such that ¢;, converges
weakly to ¢ in X and strongly in L?_. We also have

@) - Bl as < .

By using the assumption Ve(z)— B.(z} — oc as |z| -+ oo, we can obtain
the strong convergence in LP(R?) for any +oo > p > 2 (see, e.g., [3],
[Kul). Thus we have ¢ € Ay. Now, by Lemma 4 we have

(25) J(6) < Tim inf J(¢,) =

which conclude that ¢ is a minimizer to ¥,
- For the case gx < 1, we first use (22) and get

1 1
1@)2 J0=am) [DoP+ 5 [viig? - & [ ot ds.
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Then as in the case of (a) we obtain the boundedness of {¢;} in X and

K
Jo.- st <c

Thus, we can conclude in the same way. 0

3. Proof of Theorem 2

To show Theorem 2, first we recall the following lemima.

LeEMMA 5 (Kato’s inequality). Assumen > 2, e € L} (R"), div a €
L? (R™). Then for u € L} (R") satisfying Vu € Li‘f’(R") and (V —
ia)*u € L}, .(R"), we have

Aluj > Re (Sgn(u)(v - ia)gu)

in the distribution sense, where
B jfu0
= |

When a € C', this was first proved by T. Kato ( [14]). This lemma
is due to [10, Lemma 2.1}. See also {22, Theorem 2] for slightly different
assumptions to assure Kato’s inequality.

Proof of Theorern 2. (a) Although this is basically known, without
detail computation (see [13]), we present the computation in details for
the sake of completeness. Let ¥ € C2(R?). We introduce the notation:

A)(@) = 1e( [ - o5 @y ).
Then for t € R we have
AG+®)@) = 1 [ Gl -y + ()P dy

= A(¢)(z) + 2tA (¢, ¥)(z) + P A(P)().
Thus it follows that
(De — iA(o + t9)) (@ + 1)
= D¢ +tDy — 2itA($,¢)¢ + O(t),
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where D = D, — iA(¢). Therefore we have

(D — iA($ + 1)) (4 + ty)[?
= |D¢[? + tRe(Dg(Dy)") + 2itA(¢, ¥)(Dgg" ~ (Dg)*9) + O(t2).

Now we obtain

d
Eé’(éﬁ-t’ﬁ)

1 .
= Re [ D¢(Dy)" dz

t={

+ 5 [Aw DS - Do) dr
+ [ ViRe(ew)dz g [ Re(ofow) dz =0

We also note

2i) = (Dg¢" — (Dg)"¢)

and by (3)
- [AGw) jaz
N _](%Re](;(ﬂ?—y)qﬁ(y)w(y)* dy) +i(z) dx
= Re [ Ao du.

This concludes that there exists a constant E such that
1
Re [5 f D - (DY) + A" + Vigs" — gl¢|2¢w‘] dz = FRe / pu da

for every ¢ € C°(R?). This implies that ¢ satisfies (5) in the weak
sense. In particular, FE is determined by

1
BN =3 [of+ [ 4+ [Vaior— g [1or

(b) First note that A(g), A%#) € L*(R?), since
14%() 14 < Clidllal Dl

for some constant C' by using Lemma 1. Then the standard elliptic
regularity theorem (see, e.g., [18], [16]) implies the Holder continuity of
#. By noting {8) and using Lemma 4, we have
Algl = (A" + V. —glol* — B¢l
> (A" —a -4l - E)igl
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in the distribution sense. Noting 4° € L*R?), |¢]*> € L?(R?), and
|u| € H'(R?), there exist constants C' and ry such that

16(z)] < c( [B . |¢<y)|?dy) "

uniformly on z € R? (see, e.g., {9]). Since |¢| € L?*(R?), this implies
B(z)] — 0 as Ja| — oo,

{(c) We already know |¢]*> € L*(R?*) n L'(R?) and |¢|? is Holder
continuous. Hence, by the argument as in [8], one can show A € C1(R?)

and )
B=VxA= —M.

K

This also yields immediately the first formula of the part (¢) of Theo-
rem 2. The second formula of the part (c) of Theorem 2 can be proved
as in [5] and [4], for example. We omit the details. O
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